Cargando…
Monitoring emissions from the 2015 Indonesian fires using CO satellite data
Southeast Asia, in particular Indonesia, has periodically struggled with intense fire events. These events convert substantial amounts of carbon stored as peat to atmospheric carbon dioxide (CO(2)) and significantly affect atmospheric composition on a regional to global scale. During the recent 2015...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6178426/ https://www.ncbi.nlm.nih.gov/pubmed/30297466 http://dx.doi.org/10.1098/rstb.2017.0307 |
_version_ | 1783361958925303808 |
---|---|
author | Nechita-Banda, Narcisa Krol, Maarten van der Werf, Guido R. Kaiser, Johannes W. Pandey, Sudhanshu Huijnen, Vincent Clerbaux, Cathy Coheur, Pierre Deeter, Merritt N. Röckmann, Thomas |
author_facet | Nechita-Banda, Narcisa Krol, Maarten van der Werf, Guido R. Kaiser, Johannes W. Pandey, Sudhanshu Huijnen, Vincent Clerbaux, Cathy Coheur, Pierre Deeter, Merritt N. Röckmann, Thomas |
author_sort | Nechita-Banda, Narcisa |
collection | PubMed |
description | Southeast Asia, in particular Indonesia, has periodically struggled with intense fire events. These events convert substantial amounts of carbon stored as peat to atmospheric carbon dioxide (CO(2)) and significantly affect atmospheric composition on a regional to global scale. During the recent 2015 El Niño event, peat fires led to strong enhancements of carbon monoxide (CO), an air pollutant and well-known tracer for biomass burning. These enhancements were clearly observed from space by the Infrared Atmospheric Sounding Interferometer (IASI) and the Measurements of Pollution in the Troposphere (MOPITT) instruments. We use these satellite observations to estimate CO fire emissions within an inverse modelling framework. We find that the derived CO emissions for each sub-region of Indonesia and Papua are substantially different from emission inventories, highlighting uncertainties in bottom-up estimates. CO fire emissions based on either MOPITT or IASI have a similar spatial pattern and evolution in time, and a 10% uncertainty based on a set of sensitivity tests we performed. Thus, CO satellite data have a high potential to complement existing operational fire emission estimates based on satellite observations of fire counts, fire radiative power and burned area, in better constraining fire occurrence and the associated conversion of peat carbon to atmospheric CO(2). A total carbon release to the atmosphere of 0.35–0.60 Pg C can be estimated based on our results. This article is part of a discussion meeting issue ‘The impact of the 2015/2016 El Niño on the terrestrial tropical carbon cycle: patterns, mechanisms and implications'. |
format | Online Article Text |
id | pubmed-6178426 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | The Royal Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-61784262018-10-22 Monitoring emissions from the 2015 Indonesian fires using CO satellite data Nechita-Banda, Narcisa Krol, Maarten van der Werf, Guido R. Kaiser, Johannes W. Pandey, Sudhanshu Huijnen, Vincent Clerbaux, Cathy Coheur, Pierre Deeter, Merritt N. Röckmann, Thomas Philos Trans R Soc Lond B Biol Sci Articles Southeast Asia, in particular Indonesia, has periodically struggled with intense fire events. These events convert substantial amounts of carbon stored as peat to atmospheric carbon dioxide (CO(2)) and significantly affect atmospheric composition on a regional to global scale. During the recent 2015 El Niño event, peat fires led to strong enhancements of carbon monoxide (CO), an air pollutant and well-known tracer for biomass burning. These enhancements were clearly observed from space by the Infrared Atmospheric Sounding Interferometer (IASI) and the Measurements of Pollution in the Troposphere (MOPITT) instruments. We use these satellite observations to estimate CO fire emissions within an inverse modelling framework. We find that the derived CO emissions for each sub-region of Indonesia and Papua are substantially different from emission inventories, highlighting uncertainties in bottom-up estimates. CO fire emissions based on either MOPITT or IASI have a similar spatial pattern and evolution in time, and a 10% uncertainty based on a set of sensitivity tests we performed. Thus, CO satellite data have a high potential to complement existing operational fire emission estimates based on satellite observations of fire counts, fire radiative power and burned area, in better constraining fire occurrence and the associated conversion of peat carbon to atmospheric CO(2). A total carbon release to the atmosphere of 0.35–0.60 Pg C can be estimated based on our results. This article is part of a discussion meeting issue ‘The impact of the 2015/2016 El Niño on the terrestrial tropical carbon cycle: patterns, mechanisms and implications'. The Royal Society 2018-11-19 2018-10-08 /pmc/articles/PMC6178426/ /pubmed/30297466 http://dx.doi.org/10.1098/rstb.2017.0307 Text en © 2018 The Authors. http://creativecommons.org/licenses/by/4.0/ Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited. |
spellingShingle | Articles Nechita-Banda, Narcisa Krol, Maarten van der Werf, Guido R. Kaiser, Johannes W. Pandey, Sudhanshu Huijnen, Vincent Clerbaux, Cathy Coheur, Pierre Deeter, Merritt N. Röckmann, Thomas Monitoring emissions from the 2015 Indonesian fires using CO satellite data |
title | Monitoring emissions from the 2015 Indonesian fires using CO satellite data |
title_full | Monitoring emissions from the 2015 Indonesian fires using CO satellite data |
title_fullStr | Monitoring emissions from the 2015 Indonesian fires using CO satellite data |
title_full_unstemmed | Monitoring emissions from the 2015 Indonesian fires using CO satellite data |
title_short | Monitoring emissions from the 2015 Indonesian fires using CO satellite data |
title_sort | monitoring emissions from the 2015 indonesian fires using co satellite data |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6178426/ https://www.ncbi.nlm.nih.gov/pubmed/30297466 http://dx.doi.org/10.1098/rstb.2017.0307 |
work_keys_str_mv | AT nechitabandanarcisa monitoringemissionsfromthe2015indonesianfiresusingcosatellitedata AT krolmaarten monitoringemissionsfromthe2015indonesianfiresusingcosatellitedata AT vanderwerfguidor monitoringemissionsfromthe2015indonesianfiresusingcosatellitedata AT kaiserjohannesw monitoringemissionsfromthe2015indonesianfiresusingcosatellitedata AT pandeysudhanshu monitoringemissionsfromthe2015indonesianfiresusingcosatellitedata AT huijnenvincent monitoringemissionsfromthe2015indonesianfiresusingcosatellitedata AT clerbauxcathy monitoringemissionsfromthe2015indonesianfiresusingcosatellitedata AT coheurpierre monitoringemissionsfromthe2015indonesianfiresusingcosatellitedata AT deetermerrittn monitoringemissionsfromthe2015indonesianfiresusingcosatellitedata AT rockmannthomas monitoringemissionsfromthe2015indonesianfiresusingcosatellitedata |