Cargando…
Local Binary Patterns Descriptor Based on Sparse Curvelet Coefficients for False-Positive Reduction in Mammograms
Breast Cancer is the most prevalent cancer among women across the globe. Automatic detection of breast cancer using Computer Aided Diagnosis (CAD) system suffers from false positives (FPs). Thus, reduction of FP is one of the challenging tasks to improve the performance of the diagnosis systems. In...
Autores principales: | Pawar, Meenakshi M., Talbar, Sanjay N., Dudhane, Akshay |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6178513/ https://www.ncbi.nlm.nih.gov/pubmed/30356422 http://dx.doi.org/10.1155/2018/5940436 |
Ejemplares similares
-
Sparse Spatiotemporal Descriptor for Micro-Expression Recognition Using Enhanced Local Cube Binary Pattern
por: Cen, Shixin, et al.
Publicado: (2020) -
Discriminative Localized Sparse Approximations for Mass Characterization in Mammograms
por: Makrogiannis, Sokratis, et al.
Publicado: (2021) -
Quality of life following a false positive mammogram.
por: Gram, I. T., et al.
Publicado: (1990) -
Deconvolution based on the curvelet transform
por: Starck, J L, et al.
Publicado: (2003) -
Image features of true positive and false negative cancers in screening mammograms
por: Meeson, S, et al.
Publicado: (2002)