Cargando…
Robust cell particle detection to dense regions and subjective training samples based on prediction of particle center using convolutional neural network
In recent years, finding the cause of pathogenesis is expected by observing the cell images. In this paper, we propose a cell particle detection method in cell images. However, there are mainly two kinds of problems in particle detection in cell image. The first is the different properties between c...
Autores principales: | Nishida, Kenshiro, Hotta, Kazuhiro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6179199/ https://www.ncbi.nlm.nih.gov/pubmed/30303957 http://dx.doi.org/10.1371/journal.pone.0203646 |
Ejemplares similares
-
Dense Convolutional Neural Network for Identification of Raman Spectra
por: Zhou, Wei, et al.
Publicado: (2023) -
Particle Identification in Cherenkov Detectors using Convolutional Neural Networks
por: Tomalty, Theodore Tyrone
Publicado: (2016) -
Particle Identification in Cherenkov Detectors using Convolutional Neural Networks
por: Theodore, Tomalty
Publicado: (2016) -
Robust Neural Particle Identification Models
por: Ryzhikov, Artem, et al.
Publicado: (2023) -
Fine-Tuned Temporal Dense Sampling with 1D Convolutional Neural Network for Human Action Recognition
por: Lim, Kian Ming, et al.
Publicado: (2023)