Cargando…
CFSH: Factorizing sequential and historical purchase data for basket recommendation
To predict what products customers will buy in next transaction is an important task. Existing work in next-basket prediction can be summarized into two paradigms. One is the item-centric paradigm, where sequential patterns are mined from customers’ transactional data and leveraged for prediction. H...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6179207/ https://www.ncbi.nlm.nih.gov/pubmed/30303962 http://dx.doi.org/10.1371/journal.pone.0203191 |
Sumario: | To predict what products customers will buy in next transaction is an important task. Existing work in next-basket prediction can be summarized into two paradigms. One is the item-centric paradigm, where sequential patterns are mined from customers’ transactional data and leveraged for prediction. However, these approaches usually suffer from the data sparseness problem. The other is the user-centric paradigm, where collaborative filtering techniques have been applied on customers’ historical data. However, these methods ignore the sequential behaviors of customers which is often crucial for next-basket prediction. In this paper, we introduce a hybrid method, namely the Co-Factorization model over Sequential and Historical purchase data (CFSH for short) for next-basket recommendation. Compared with existing methods, our approach conveys the following merits: 1) By mining global sequential patterns, we can avoid the sparseness problem in traditional item-centric methods; 2) By factorizing product-product and customer-product matrices simultaneously, we can fully exploit both sequential and historical behaviors to learn customer and product representations better; 3) By using a hybrid recommendation method, we can achieve better performance in next-basket prediction. Experimental results on three real-world purchase datasets demonstrated the effectiveness of our approach as compared with the state-of-the-art methods. |
---|