Cargando…
Multi-resolution speech analysis for automatic speech recognition using deep neural networks: Experiments on TIMIT
Speech Analysis for Automatic Speech Recognition (ASR) systems typically starts with a Short-Time Fourier Transform (STFT) that implies selecting a fixed point in the time-frequency resolution trade-off. This approach, combined with a Mel-frequency scaled filterbank and a Discrete Cosine Transform g...
Autores principales: | Toledano, Doroteo T., Fernández-Gallego, María Pilar, Lozano-Diez, Alicia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6179252/ https://www.ncbi.nlm.nih.gov/pubmed/30304055 http://dx.doi.org/10.1371/journal.pone.0205355 |
Ejemplares similares
-
An analysis of the influence of deep neural network (DNN) topology in bottleneck feature based language recognition
por: Lozano-Diez, Alicia, et al.
Publicado: (2017) -
Deep Spiking Neural Networks for Large Vocabulary Automatic Speech Recognition
por: Wu, Jibin, et al.
Publicado: (2020) -
Automatic speech recognition: a deep learning approach
por: Yu, Dong, et al.
Publicado: (2015) -
Automatic Speech Recognition from Neural Signals: A Focused Review
por: Herff, Christian, et al.
Publicado: (2016) -
Domain Adaptation with Augmented Data by Deep Neural Network Based Method Using Re-Recorded Speech for Automatic Speech Recognition in Real Environment
por: Nahar, Raufun, et al.
Publicado: (2022)