Cargando…
Tumor Spheres Quantification with Smoothed Euclidean Distance Transform
Tumor sphere quantification plays an important role in cancer research and drugs screening. Even though the number and size of tumor spheres can be found manually, this process is time-consuming, prone to making errors, and may not be viable when the number of images is very large. This manuscript p...
Autores principales: | Sahin, Ismet, Zhang, Yu, McAllister, Florencia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6179360/ https://www.ncbi.nlm.nih.gov/pubmed/30319887 http://dx.doi.org/10.4172/2155-9937.1000143 |
Ejemplares similares
-
Generating Triangulated Macromolecular Surfaces by Euclidean Distance Transform
por: Xu, Dong, et al.
Publicado: (2009) -
Euclidean distance geometry: an introduction
por: Liberti, Leo, et al.
Publicado: (2017) -
Smoothness Parameter of Power of Euclidean Norm
por: Rodomanov, Anton, et al.
Publicado: (2020) -
Euclidean distance-optimized data transformation for cluster analysis in biomedical data (EDOtrans)
por: Ultsch, Alfred, et al.
Publicado: (2022) -
One-Center Location With Block and Euclidean Distance
por: Dearing, P. M., et al.
Publicado: (2006)