Cargando…
Improved Parallel Magnertic Resonance Imaging reconstruction with Complex Proximal Support Vector Regression
Generalized Auto-calibrating Partially Parallel Acquisitions (GRAPPA) has been widely used to reduce imaging time in Magnetic Resonance Imaging. GRAPPA synthesizes missing data by using a linear interpolation of neighboring measured data over all coils, thus accuracy of the interpolation weights fit...
Autores principales: | Xu, Lin, Zheng, Qian, Jiang, Tao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6180007/ https://www.ncbi.nlm.nih.gov/pubmed/30305650 http://dx.doi.org/10.1038/s41598-018-33171-x |
Ejemplares similares
-
Significance Support Vector Regression for Image Denoising
por: Sun, Bing, et al.
Publicado: (2021) -
Improved parallel magnetic resonance imaging reconstruction with multiple variable density sampling
por: Sheng, Jinhua, et al.
Publicado: (2021) -
Twin Support Vector Regression for complex millimetric wave propagation environment
por: Charrada, Anis, et al.
Publicado: (2020) -
Predicting and improving the protein sequence alignment quality by support vector regression
por: Lee, Minho, et al.
Publicado: (2007) -
Fast Undersampled Functional Magnetic Resonance Imaging Using Nonlinear Regularized Parallel Image Reconstruction
por: Hugger, Thimo, et al.
Publicado: (2011)