Cargando…

Power law fitness landscapes and their ability to predict fitness

Whether or not evolution by natural selection is predictable depends on the existence of general patterns shaping the way mutations interact with the genetic background. This interaction, also known as epistasis, has been observed during adaptation (macroscopic epistasis) and in individual mutations...

Descripción completa

Detalles Bibliográficos
Autores principales: Passagem-Santos, Diogo, Zacarias, Simone, Perfeito, Lilia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6180038/
https://www.ncbi.nlm.nih.gov/pubmed/30190560
http://dx.doi.org/10.1038/s41437-018-0143-5
Descripción
Sumario:Whether or not evolution by natural selection is predictable depends on the existence of general patterns shaping the way mutations interact with the genetic background. This interaction, also known as epistasis, has been observed during adaptation (macroscopic epistasis) and in individual mutations (microscopic epistasis). Interestingly, a consistent negative correlation between the fitness effect of beneficial mutations and background fitness (known as diminishing returns epistasis) has been observed across different species and conditions. We tested whether the adaptation pattern of an additional species, Schizosaccharomyces pombe, followed the same trend. We used strains that differed by the presence of large karyotype differences and observed the same pattern of fitness convergence. Using these data along with published datasets, we measured the ability of different models to describe adaptation rates. We found that a phenotype-fitness landscape shaped like a power law is able to correctly predict adaptation dynamics in a variety of species and conditions. Furthermore we show that this model can provide a link between the observed macroscopic and microscopic epistasis. It may be very useful in the development of algorithms able to predict the adaptation of microorganisms from measures of the current phenotypes. Overall, our results suggest that even though adaptation quickly slows down, populations adapting to lab conditions may be quite far from a fitness peak.