Cargando…

Deciphering molecular details in the assembly of alpha-type carboxysome

Bacterial microcompartments (BMCs) are promising natural protein structures for applications that require the segregation of certain metabolic functions or molecular species in a defined microenvironment. To understand how endogenous cargos are packaged inside the protein shell is key for using BMCs...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Yilan, He, Xinyuan, Lim, Weiping, Mueller, Joshua, Lawrie, Justin, Kramer, Levi, Guo, Jiantao, Niu, Wei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6180065/
https://www.ncbi.nlm.nih.gov/pubmed/30305640
http://dx.doi.org/10.1038/s41598-018-33074-x
Descripción
Sumario:Bacterial microcompartments (BMCs) are promising natural protein structures for applications that require the segregation of certain metabolic functions or molecular species in a defined microenvironment. To understand how endogenous cargos are packaged inside the protein shell is key for using BMCs as nano-scale reactors or delivery vesicles. In this report, we studied the encapsulation of RuBisCO into the α-type carboxysome from Halothiobacillus neapolitan. Our experimental data revealed that the CsoS2 scaffold proteins engage RuBisCO enzyme through an interaction with the small subunit (CbbS). In addition, the N domain of the large subunit (CbbL) of RuBisCO interacts with all shell proteins that can form the hexamers. The binding affinity between the N domain of CbbL and one of the major shell proteins, CsoS1C, is within the submicromolar range. The absence of the N domain also prevented the encapsulation of the rest of the RuBisCO subunits. Our findings complete the picture of how RuBisCOs are encapsulated into the α-type carboxysome and provide insights for future studies and engineering of carboxysome as a protein shell.