Cargando…

Efficient carrier multiplication in CsPbI(3) perovskite nanocrystals

The all-inorganic perovskite nanocrystals are currently in the research spotlight owing to their physical stability and superior optical properties—these features make them interesting for optoelectronic and photovoltaic applications. Here, we report on the observation of highly efficient carrier mu...

Descripción completa

Detalles Bibliográficos
Autores principales: de Weerd, Chris, Gomez, Leyre, Capretti, Antonio, Lebrun, Delphine M., Matsubara, Eiichi, Lin, Junhao, Ashida, Masaaki, Spoor, Frank C. M., Siebbeles, Laurens D. A., Houtepen, Arjan J., Suenaga, Kazutomo, Fujiwara, Yasufumi, Gregorkiewicz, Tom
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6180104/
https://www.ncbi.nlm.nih.gov/pubmed/30305623
http://dx.doi.org/10.1038/s41467-018-06721-0
_version_ 1783362131455901696
author de Weerd, Chris
Gomez, Leyre
Capretti, Antonio
Lebrun, Delphine M.
Matsubara, Eiichi
Lin, Junhao
Ashida, Masaaki
Spoor, Frank C. M.
Siebbeles, Laurens D. A.
Houtepen, Arjan J.
Suenaga, Kazutomo
Fujiwara, Yasufumi
Gregorkiewicz, Tom
author_facet de Weerd, Chris
Gomez, Leyre
Capretti, Antonio
Lebrun, Delphine M.
Matsubara, Eiichi
Lin, Junhao
Ashida, Masaaki
Spoor, Frank C. M.
Siebbeles, Laurens D. A.
Houtepen, Arjan J.
Suenaga, Kazutomo
Fujiwara, Yasufumi
Gregorkiewicz, Tom
author_sort de Weerd, Chris
collection PubMed
description The all-inorganic perovskite nanocrystals are currently in the research spotlight owing to their physical stability and superior optical properties—these features make them interesting for optoelectronic and photovoltaic applications. Here, we report on the observation of highly efficient carrier multiplication in colloidal CsPbI(3) nanocrystals prepared by a hot-injection method. The carrier multiplication process counteracts thermalization of hot carriers and as such provides the potential to increase the conversion efficiency of solar cells. We demonstrate that carrier multiplication commences at the threshold excitation energy near the energy conservation limit of twice the band gap, and has step-like characteristics with an extremely high quantum yield of up to 98%. Using ultrahigh temporal resolution, we show that carrier multiplication induces a longer build-up of the free carrier concentration, thus providing important insights into the physical mechanism responsible for this phenomenon. The evidence is obtained using three independent experimental approaches, and is conclusive.
format Online
Article
Text
id pubmed-6180104
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-61801042018-10-15 Efficient carrier multiplication in CsPbI(3) perovskite nanocrystals de Weerd, Chris Gomez, Leyre Capretti, Antonio Lebrun, Delphine M. Matsubara, Eiichi Lin, Junhao Ashida, Masaaki Spoor, Frank C. M. Siebbeles, Laurens D. A. Houtepen, Arjan J. Suenaga, Kazutomo Fujiwara, Yasufumi Gregorkiewicz, Tom Nat Commun Article The all-inorganic perovskite nanocrystals are currently in the research spotlight owing to their physical stability and superior optical properties—these features make them interesting for optoelectronic and photovoltaic applications. Here, we report on the observation of highly efficient carrier multiplication in colloidal CsPbI(3) nanocrystals prepared by a hot-injection method. The carrier multiplication process counteracts thermalization of hot carriers and as such provides the potential to increase the conversion efficiency of solar cells. We demonstrate that carrier multiplication commences at the threshold excitation energy near the energy conservation limit of twice the band gap, and has step-like characteristics with an extremely high quantum yield of up to 98%. Using ultrahigh temporal resolution, we show that carrier multiplication induces a longer build-up of the free carrier concentration, thus providing important insights into the physical mechanism responsible for this phenomenon. The evidence is obtained using three independent experimental approaches, and is conclusive. Nature Publishing Group UK 2018-10-10 /pmc/articles/PMC6180104/ /pubmed/30305623 http://dx.doi.org/10.1038/s41467-018-06721-0 Text en © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
de Weerd, Chris
Gomez, Leyre
Capretti, Antonio
Lebrun, Delphine M.
Matsubara, Eiichi
Lin, Junhao
Ashida, Masaaki
Spoor, Frank C. M.
Siebbeles, Laurens D. A.
Houtepen, Arjan J.
Suenaga, Kazutomo
Fujiwara, Yasufumi
Gregorkiewicz, Tom
Efficient carrier multiplication in CsPbI(3) perovskite nanocrystals
title Efficient carrier multiplication in CsPbI(3) perovskite nanocrystals
title_full Efficient carrier multiplication in CsPbI(3) perovskite nanocrystals
title_fullStr Efficient carrier multiplication in CsPbI(3) perovskite nanocrystals
title_full_unstemmed Efficient carrier multiplication in CsPbI(3) perovskite nanocrystals
title_short Efficient carrier multiplication in CsPbI(3) perovskite nanocrystals
title_sort efficient carrier multiplication in cspbi(3) perovskite nanocrystals
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6180104/
https://www.ncbi.nlm.nih.gov/pubmed/30305623
http://dx.doi.org/10.1038/s41467-018-06721-0
work_keys_str_mv AT deweerdchris efficientcarriermultiplicationincspbi3perovskitenanocrystals
AT gomezleyre efficientcarriermultiplicationincspbi3perovskitenanocrystals
AT caprettiantonio efficientcarriermultiplicationincspbi3perovskitenanocrystals
AT lebrundelphinem efficientcarriermultiplicationincspbi3perovskitenanocrystals
AT matsubaraeiichi efficientcarriermultiplicationincspbi3perovskitenanocrystals
AT linjunhao efficientcarriermultiplicationincspbi3perovskitenanocrystals
AT ashidamasaaki efficientcarriermultiplicationincspbi3perovskitenanocrystals
AT spoorfrankcm efficientcarriermultiplicationincspbi3perovskitenanocrystals
AT siebbeleslaurensda efficientcarriermultiplicationincspbi3perovskitenanocrystals
AT houtepenarjanj efficientcarriermultiplicationincspbi3perovskitenanocrystals
AT suenagakazutomo efficientcarriermultiplicationincspbi3perovskitenanocrystals
AT fujiwarayasufumi efficientcarriermultiplicationincspbi3perovskitenanocrystals
AT gregorkiewicztom efficientcarriermultiplicationincspbi3perovskitenanocrystals