Cargando…

Low threshold and efficient multiple exciton generation in halide perovskite nanocrystals

Multiple exciton generation (MEG) or carrier multiplication, a process that spawns two or more electron–hole pairs from an absorbed high-energy photon (larger than two times bandgap energy E(g)), is a promising way to augment the photocurrent and overcome the Shockley–Queisser limit. Conventional se...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Mingjie, Begum, Raihana, Fu, Jianhui, Xu, Qiang, Koh, Teck Ming, Veldhuis, Sjoerd A., Grätzel, Michael, Mathews, Nripan, Mhaisalkar, Subodh, Sum, Tze Chien
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6180109/
https://www.ncbi.nlm.nih.gov/pubmed/30305633
http://dx.doi.org/10.1038/s41467-018-06596-1
_version_ 1783362132203536384
author Li, Mingjie
Begum, Raihana
Fu, Jianhui
Xu, Qiang
Koh, Teck Ming
Veldhuis, Sjoerd A.
Grätzel, Michael
Mathews, Nripan
Mhaisalkar, Subodh
Sum, Tze Chien
author_facet Li, Mingjie
Begum, Raihana
Fu, Jianhui
Xu, Qiang
Koh, Teck Ming
Veldhuis, Sjoerd A.
Grätzel, Michael
Mathews, Nripan
Mhaisalkar, Subodh
Sum, Tze Chien
author_sort Li, Mingjie
collection PubMed
description Multiple exciton generation (MEG) or carrier multiplication, a process that spawns two or more electron–hole pairs from an absorbed high-energy photon (larger than two times bandgap energy E(g)), is a promising way to augment the photocurrent and overcome the Shockley–Queisser limit. Conventional semiconductor nanocrystals, the forerunners, face severe challenges from fast hot-carrier cooling. Perovskite nanocrystals possess an intrinsic phonon bottleneck that prolongs slow hot-carrier cooling, transcending these limitations. Herein, we demonstrate enhanced MEG with 2.25E(g) threshold and 75% slope efficiency in intermediate-confined colloidal formamidinium lead iodide nanocrystals, surpassing those in strongly confined lead sulfide or lead selenide incumbents. Efficient MEG occurs via inverse Auger process within 90 fs, afforded by the slow cooling of energetic hot carriers. These nanocrystals circumvent the conundrum over enhanced Coulombic coupling and reduced density of states in strongly confined nanocrystals. These insights may lead to the realization of next generation of solar cells and efficient optoelectronic devices.
format Online
Article
Text
id pubmed-6180109
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-61801092018-10-15 Low threshold and efficient multiple exciton generation in halide perovskite nanocrystals Li, Mingjie Begum, Raihana Fu, Jianhui Xu, Qiang Koh, Teck Ming Veldhuis, Sjoerd A. Grätzel, Michael Mathews, Nripan Mhaisalkar, Subodh Sum, Tze Chien Nat Commun Article Multiple exciton generation (MEG) or carrier multiplication, a process that spawns two or more electron–hole pairs from an absorbed high-energy photon (larger than two times bandgap energy E(g)), is a promising way to augment the photocurrent and overcome the Shockley–Queisser limit. Conventional semiconductor nanocrystals, the forerunners, face severe challenges from fast hot-carrier cooling. Perovskite nanocrystals possess an intrinsic phonon bottleneck that prolongs slow hot-carrier cooling, transcending these limitations. Herein, we demonstrate enhanced MEG with 2.25E(g) threshold and 75% slope efficiency in intermediate-confined colloidal formamidinium lead iodide nanocrystals, surpassing those in strongly confined lead sulfide or lead selenide incumbents. Efficient MEG occurs via inverse Auger process within 90 fs, afforded by the slow cooling of energetic hot carriers. These nanocrystals circumvent the conundrum over enhanced Coulombic coupling and reduced density of states in strongly confined nanocrystals. These insights may lead to the realization of next generation of solar cells and efficient optoelectronic devices. Nature Publishing Group UK 2018-10-10 /pmc/articles/PMC6180109/ /pubmed/30305633 http://dx.doi.org/10.1038/s41467-018-06596-1 Text en © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Li, Mingjie
Begum, Raihana
Fu, Jianhui
Xu, Qiang
Koh, Teck Ming
Veldhuis, Sjoerd A.
Grätzel, Michael
Mathews, Nripan
Mhaisalkar, Subodh
Sum, Tze Chien
Low threshold and efficient multiple exciton generation in halide perovskite nanocrystals
title Low threshold and efficient multiple exciton generation in halide perovskite nanocrystals
title_full Low threshold and efficient multiple exciton generation in halide perovskite nanocrystals
title_fullStr Low threshold and efficient multiple exciton generation in halide perovskite nanocrystals
title_full_unstemmed Low threshold and efficient multiple exciton generation in halide perovskite nanocrystals
title_short Low threshold and efficient multiple exciton generation in halide perovskite nanocrystals
title_sort low threshold and efficient multiple exciton generation in halide perovskite nanocrystals
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6180109/
https://www.ncbi.nlm.nih.gov/pubmed/30305633
http://dx.doi.org/10.1038/s41467-018-06596-1
work_keys_str_mv AT limingjie lowthresholdandefficientmultipleexcitongenerationinhalideperovskitenanocrystals
AT begumraihana lowthresholdandefficientmultipleexcitongenerationinhalideperovskitenanocrystals
AT fujianhui lowthresholdandefficientmultipleexcitongenerationinhalideperovskitenanocrystals
AT xuqiang lowthresholdandefficientmultipleexcitongenerationinhalideperovskitenanocrystals
AT kohteckming lowthresholdandefficientmultipleexcitongenerationinhalideperovskitenanocrystals
AT veldhuissjoerda lowthresholdandefficientmultipleexcitongenerationinhalideperovskitenanocrystals
AT gratzelmichael lowthresholdandefficientmultipleexcitongenerationinhalideperovskitenanocrystals
AT mathewsnripan lowthresholdandefficientmultipleexcitongenerationinhalideperovskitenanocrystals
AT mhaisalkarsubodh lowthresholdandefficientmultipleexcitongenerationinhalideperovskitenanocrystals
AT sumtzechien lowthresholdandefficientmultipleexcitongenerationinhalideperovskitenanocrystals