Cargando…
Low threshold and efficient multiple exciton generation in halide perovskite nanocrystals
Multiple exciton generation (MEG) or carrier multiplication, a process that spawns two or more electron–hole pairs from an absorbed high-energy photon (larger than two times bandgap energy E(g)), is a promising way to augment the photocurrent and overcome the Shockley–Queisser limit. Conventional se...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6180109/ https://www.ncbi.nlm.nih.gov/pubmed/30305633 http://dx.doi.org/10.1038/s41467-018-06596-1 |
_version_ | 1783362132203536384 |
---|---|
author | Li, Mingjie Begum, Raihana Fu, Jianhui Xu, Qiang Koh, Teck Ming Veldhuis, Sjoerd A. Grätzel, Michael Mathews, Nripan Mhaisalkar, Subodh Sum, Tze Chien |
author_facet | Li, Mingjie Begum, Raihana Fu, Jianhui Xu, Qiang Koh, Teck Ming Veldhuis, Sjoerd A. Grätzel, Michael Mathews, Nripan Mhaisalkar, Subodh Sum, Tze Chien |
author_sort | Li, Mingjie |
collection | PubMed |
description | Multiple exciton generation (MEG) or carrier multiplication, a process that spawns two or more electron–hole pairs from an absorbed high-energy photon (larger than two times bandgap energy E(g)), is a promising way to augment the photocurrent and overcome the Shockley–Queisser limit. Conventional semiconductor nanocrystals, the forerunners, face severe challenges from fast hot-carrier cooling. Perovskite nanocrystals possess an intrinsic phonon bottleneck that prolongs slow hot-carrier cooling, transcending these limitations. Herein, we demonstrate enhanced MEG with 2.25E(g) threshold and 75% slope efficiency in intermediate-confined colloidal formamidinium lead iodide nanocrystals, surpassing those in strongly confined lead sulfide or lead selenide incumbents. Efficient MEG occurs via inverse Auger process within 90 fs, afforded by the slow cooling of energetic hot carriers. These nanocrystals circumvent the conundrum over enhanced Coulombic coupling and reduced density of states in strongly confined nanocrystals. These insights may lead to the realization of next generation of solar cells and efficient optoelectronic devices. |
format | Online Article Text |
id | pubmed-6180109 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-61801092018-10-15 Low threshold and efficient multiple exciton generation in halide perovskite nanocrystals Li, Mingjie Begum, Raihana Fu, Jianhui Xu, Qiang Koh, Teck Ming Veldhuis, Sjoerd A. Grätzel, Michael Mathews, Nripan Mhaisalkar, Subodh Sum, Tze Chien Nat Commun Article Multiple exciton generation (MEG) or carrier multiplication, a process that spawns two or more electron–hole pairs from an absorbed high-energy photon (larger than two times bandgap energy E(g)), is a promising way to augment the photocurrent and overcome the Shockley–Queisser limit. Conventional semiconductor nanocrystals, the forerunners, face severe challenges from fast hot-carrier cooling. Perovskite nanocrystals possess an intrinsic phonon bottleneck that prolongs slow hot-carrier cooling, transcending these limitations. Herein, we demonstrate enhanced MEG with 2.25E(g) threshold and 75% slope efficiency in intermediate-confined colloidal formamidinium lead iodide nanocrystals, surpassing those in strongly confined lead sulfide or lead selenide incumbents. Efficient MEG occurs via inverse Auger process within 90 fs, afforded by the slow cooling of energetic hot carriers. These nanocrystals circumvent the conundrum over enhanced Coulombic coupling and reduced density of states in strongly confined nanocrystals. These insights may lead to the realization of next generation of solar cells and efficient optoelectronic devices. Nature Publishing Group UK 2018-10-10 /pmc/articles/PMC6180109/ /pubmed/30305633 http://dx.doi.org/10.1038/s41467-018-06596-1 Text en © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Li, Mingjie Begum, Raihana Fu, Jianhui Xu, Qiang Koh, Teck Ming Veldhuis, Sjoerd A. Grätzel, Michael Mathews, Nripan Mhaisalkar, Subodh Sum, Tze Chien Low threshold and efficient multiple exciton generation in halide perovskite nanocrystals |
title | Low threshold and efficient multiple exciton generation in halide perovskite nanocrystals |
title_full | Low threshold and efficient multiple exciton generation in halide perovskite nanocrystals |
title_fullStr | Low threshold and efficient multiple exciton generation in halide perovskite nanocrystals |
title_full_unstemmed | Low threshold and efficient multiple exciton generation in halide perovskite nanocrystals |
title_short | Low threshold and efficient multiple exciton generation in halide perovskite nanocrystals |
title_sort | low threshold and efficient multiple exciton generation in halide perovskite nanocrystals |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6180109/ https://www.ncbi.nlm.nih.gov/pubmed/30305633 http://dx.doi.org/10.1038/s41467-018-06596-1 |
work_keys_str_mv | AT limingjie lowthresholdandefficientmultipleexcitongenerationinhalideperovskitenanocrystals AT begumraihana lowthresholdandefficientmultipleexcitongenerationinhalideperovskitenanocrystals AT fujianhui lowthresholdandefficientmultipleexcitongenerationinhalideperovskitenanocrystals AT xuqiang lowthresholdandefficientmultipleexcitongenerationinhalideperovskitenanocrystals AT kohteckming lowthresholdandefficientmultipleexcitongenerationinhalideperovskitenanocrystals AT veldhuissjoerda lowthresholdandefficientmultipleexcitongenerationinhalideperovskitenanocrystals AT gratzelmichael lowthresholdandefficientmultipleexcitongenerationinhalideperovskitenanocrystals AT mathewsnripan lowthresholdandefficientmultipleexcitongenerationinhalideperovskitenanocrystals AT mhaisalkarsubodh lowthresholdandefficientmultipleexcitongenerationinhalideperovskitenanocrystals AT sumtzechien lowthresholdandefficientmultipleexcitongenerationinhalideperovskitenanocrystals |