Cargando…
Privacy-preserving record linkage in large databases using secure multiparty computation
BACKGROUND: Practical applications for data analysis may require combining multiple databases belonging to different owners, such as health centers. The analysis should be performed without violating privacy of neither the centers themselves, nor the patients whose records these centers store. To av...
Autores principales: | Laud, Peeter, Pankova, Alisa |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6180364/ https://www.ncbi.nlm.nih.gov/pubmed/30309353 http://dx.doi.org/10.1186/s12920-018-0400-8 |
Ejemplares similares
-
Privacy-preserving record linkage using Bloom filters
por: Schnell, Rainer, et al.
Publicado: (2009) -
Secure and scalable deduplication of horizontally partitioned health data for privacy-preserving distributed statistical computation
por: Yigzaw, Kassaye Yitbarek, et al.
Publicado: (2017) -
Secure Privacy Preserving Record Linkage of Large Databases by Modified Bloom Filter Encodings
por: Schnell, Rainer, et al.
Publicado: (2017) -
Privacy-preserving architecture for providing feedback to clinicians on their clinical performance
por: Yigzaw, Kassaye Yitbarek, et al.
Publicado: (2020) -
High performance logistic regression for privacy-preserving genome analysis
por: De Cock, Martine, et al.
Publicado: (2021)