Cargando…
Logistic regression over encrypted data from fully homomorphic encryption
BACKGROUND: One of the tasks in the 2017 iDASH secure genome analysis competition was to enable training of logistic regression models over encrypted genomic data. More precisely, given a list of approximately 1500 patient records, each with 18 binary features containing information on specific muta...
Autores principales: | Chen, Hao, Gilad-Bachrach, Ran, Han, Kyoohyung, Huang, Zhicong, Jalali, Amir, Laine, Kim, Lauter, Kristin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6180402/ https://www.ncbi.nlm.nih.gov/pubmed/30309350 http://dx.doi.org/10.1186/s12920-018-0397-z |
Ejemplares similares
-
Privacy-preserving semi-parallel logistic regression training with fully homomorphic encryption
por: Carpov, Sergiu, et al.
Publicado: (2020) -
Secure Logistic Regression Based on Homomorphic Encryption: Design and Evaluation
por: Kim, Miran, et al.
Publicado: (2018) -
Logistic regression model training based on the approximate homomorphic encryption
por: Kim, Andrey, et al.
Publicado: (2018) -
Private genome analysis through homomorphic encryption
por: Kim, Miran, et al.
Publicado: (2015) -
Fully homomorphic encryption in real world applications
por: Chatterjee, Ayantika, et al.
Publicado: (2019)