Cargando…
Transcriptional defects and reprogramming barriers in somatic cell nuclear reprogramming as revealed by single-embryo RNA sequencing
BACKGROUND: Nuclear reprogramming reinstates totipotency or pluripotency in somatic cells by changing their gene transcription profile. This technology is widely used in medicine, animal husbandry and other industries. However, certain deficiencies severely restrict the applications of this technolo...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6180508/ https://www.ncbi.nlm.nih.gov/pubmed/30305014 http://dx.doi.org/10.1186/s12864-018-5091-1 |
_version_ | 1783362215582105600 |
---|---|
author | Liu, Yong Wu, Fengrui Zhang, Ling Wu, Xiaoqing Li, Dengkun Xin, Jing Xie, Juan Kong, Feng Wang, Wenying Wu, Qiaoqin Zhang, Di Wang, Rong Gao, Shaorong Li, Wenyong |
author_facet | Liu, Yong Wu, Fengrui Zhang, Ling Wu, Xiaoqing Li, Dengkun Xin, Jing Xie, Juan Kong, Feng Wang, Wenying Wu, Qiaoqin Zhang, Di Wang, Rong Gao, Shaorong Li, Wenyong |
author_sort | Liu, Yong |
collection | PubMed |
description | BACKGROUND: Nuclear reprogramming reinstates totipotency or pluripotency in somatic cells by changing their gene transcription profile. This technology is widely used in medicine, animal husbandry and other industries. However, certain deficiencies severely restrict the applications of this technology. RESULTS: Using single-embryo RNA-seq, our study provides complete transcriptome blueprints of embryos generated by cumulus cell (CC) donor nuclear transfer (NT), embryos generated by mouse embryonic fibroblast (MEF) donor NT and in vivo embryos at each stage (zygote, 2-cell, 4-cell, 8-cell, morula, and blastocyst). According to the results from further analyses, NT embryos exhibit RNA processing and translation initiation defects during the zygotic genome activation (ZGA) period, and protein kinase activity and protein phosphorylation are defective during blastocyst formation. Two thousand three constant genes are not able to be reprogrammed in CCs and MEFs. Among these constant genes, 136 genes are continuously mis-transcribed throughout all developmental stages. These 136 differential genes may be reprogramming barrier genes (RBGs) and more studies are needed to identify. CONCLUSIONS: These embryonic transcriptome blueprints provide new data for further mechanistic studies of somatic nuclear reprogramming. These findings may improve the efficiency of somatic cell nuclear transfer. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12864-018-5091-1) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-6180508 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-61805082018-10-18 Transcriptional defects and reprogramming barriers in somatic cell nuclear reprogramming as revealed by single-embryo RNA sequencing Liu, Yong Wu, Fengrui Zhang, Ling Wu, Xiaoqing Li, Dengkun Xin, Jing Xie, Juan Kong, Feng Wang, Wenying Wu, Qiaoqin Zhang, Di Wang, Rong Gao, Shaorong Li, Wenyong BMC Genomics Research Article BACKGROUND: Nuclear reprogramming reinstates totipotency or pluripotency in somatic cells by changing their gene transcription profile. This technology is widely used in medicine, animal husbandry and other industries. However, certain deficiencies severely restrict the applications of this technology. RESULTS: Using single-embryo RNA-seq, our study provides complete transcriptome blueprints of embryos generated by cumulus cell (CC) donor nuclear transfer (NT), embryos generated by mouse embryonic fibroblast (MEF) donor NT and in vivo embryos at each stage (zygote, 2-cell, 4-cell, 8-cell, morula, and blastocyst). According to the results from further analyses, NT embryos exhibit RNA processing and translation initiation defects during the zygotic genome activation (ZGA) period, and protein kinase activity and protein phosphorylation are defective during blastocyst formation. Two thousand three constant genes are not able to be reprogrammed in CCs and MEFs. Among these constant genes, 136 genes are continuously mis-transcribed throughout all developmental stages. These 136 differential genes may be reprogramming barrier genes (RBGs) and more studies are needed to identify. CONCLUSIONS: These embryonic transcriptome blueprints provide new data for further mechanistic studies of somatic nuclear reprogramming. These findings may improve the efficiency of somatic cell nuclear transfer. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12864-018-5091-1) contains supplementary material, which is available to authorized users. BioMed Central 2018-10-10 /pmc/articles/PMC6180508/ /pubmed/30305014 http://dx.doi.org/10.1186/s12864-018-5091-1 Text en © The Author(s). 2018 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Article Liu, Yong Wu, Fengrui Zhang, Ling Wu, Xiaoqing Li, Dengkun Xin, Jing Xie, Juan Kong, Feng Wang, Wenying Wu, Qiaoqin Zhang, Di Wang, Rong Gao, Shaorong Li, Wenyong Transcriptional defects and reprogramming barriers in somatic cell nuclear reprogramming as revealed by single-embryo RNA sequencing |
title | Transcriptional defects and reprogramming barriers in somatic cell nuclear reprogramming as revealed by single-embryo RNA sequencing |
title_full | Transcriptional defects and reprogramming barriers in somatic cell nuclear reprogramming as revealed by single-embryo RNA sequencing |
title_fullStr | Transcriptional defects and reprogramming barriers in somatic cell nuclear reprogramming as revealed by single-embryo RNA sequencing |
title_full_unstemmed | Transcriptional defects and reprogramming barriers in somatic cell nuclear reprogramming as revealed by single-embryo RNA sequencing |
title_short | Transcriptional defects and reprogramming barriers in somatic cell nuclear reprogramming as revealed by single-embryo RNA sequencing |
title_sort | transcriptional defects and reprogramming barriers in somatic cell nuclear reprogramming as revealed by single-embryo rna sequencing |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6180508/ https://www.ncbi.nlm.nih.gov/pubmed/30305014 http://dx.doi.org/10.1186/s12864-018-5091-1 |
work_keys_str_mv | AT liuyong transcriptionaldefectsandreprogrammingbarriersinsomaticcellnuclearreprogrammingasrevealedbysingleembryornasequencing AT wufengrui transcriptionaldefectsandreprogrammingbarriersinsomaticcellnuclearreprogrammingasrevealedbysingleembryornasequencing AT zhangling transcriptionaldefectsandreprogrammingbarriersinsomaticcellnuclearreprogrammingasrevealedbysingleembryornasequencing AT wuxiaoqing transcriptionaldefectsandreprogrammingbarriersinsomaticcellnuclearreprogrammingasrevealedbysingleembryornasequencing AT lidengkun transcriptionaldefectsandreprogrammingbarriersinsomaticcellnuclearreprogrammingasrevealedbysingleembryornasequencing AT xinjing transcriptionaldefectsandreprogrammingbarriersinsomaticcellnuclearreprogrammingasrevealedbysingleembryornasequencing AT xiejuan transcriptionaldefectsandreprogrammingbarriersinsomaticcellnuclearreprogrammingasrevealedbysingleembryornasequencing AT kongfeng transcriptionaldefectsandreprogrammingbarriersinsomaticcellnuclearreprogrammingasrevealedbysingleembryornasequencing AT wangwenying transcriptionaldefectsandreprogrammingbarriersinsomaticcellnuclearreprogrammingasrevealedbysingleembryornasequencing AT wuqiaoqin transcriptionaldefectsandreprogrammingbarriersinsomaticcellnuclearreprogrammingasrevealedbysingleembryornasequencing AT zhangdi transcriptionaldefectsandreprogrammingbarriersinsomaticcellnuclearreprogrammingasrevealedbysingleembryornasequencing AT wangrong transcriptionaldefectsandreprogrammingbarriersinsomaticcellnuclearreprogrammingasrevealedbysingleembryornasequencing AT gaoshaorong transcriptionaldefectsandreprogrammingbarriersinsomaticcellnuclearreprogrammingasrevealedbysingleembryornasequencing AT liwenyong transcriptionaldefectsandreprogrammingbarriersinsomaticcellnuclearreprogrammingasrevealedbysingleembryornasequencing |