Cargando…

A molecular and staging model predicts survival in patients with resected non-small cell lung cancer

BACKGROUND: The current TNM staging system is far from perfect in predicting the survival of individual non-small cell lung cancer (NSCLC) patients. In this study, we aim to combine clinical variables and molecular biomarkers to develop a prognostic model for patients with NSCLC. METHODS: Candidate...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Lei, Shi, Minxin, Wang, Zhiwei, Lu, Haimin, Li, Chang, Tao, Yu, Chen, Xiaoyan, Zhao, Jun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6180609/
https://www.ncbi.nlm.nih.gov/pubmed/30305064
http://dx.doi.org/10.1186/s12885-018-4881-9
Descripción
Sumario:BACKGROUND: The current TNM staging system is far from perfect in predicting the survival of individual non-small cell lung cancer (NSCLC) patients. In this study, we aim to combine clinical variables and molecular biomarkers to develop a prognostic model for patients with NSCLC. METHODS: Candidate molecular biomarkers were extracted from the Gene Expression Omnibus (GEO), and Cox regression analysis was performed to determine significant prognostic factors. The survival prediction model was constructed based on multivariable Cox regression analysis in a cohort of 152 NSCLC patients. The predictive performance of the model was assessed by the Area under the Receiver Operating Characteristic Curve (AUC) and Kaplan–Meier survival analysis. RESULTS: The survival prediction model consisting of two genes (TPX2 and MMP12) and two clinicopathological factors (tumor stage and grade) was developed. The patients could be divided into either high-risk group or low-risk group. Both disease-free survival and overall survival were significantly different among the diverse groups (P < 0.05). The AUC of the prognostic model was higher than that of the TNM staging system for predicting survival. CONCLUSIONS: We developed a novel prognostic model which can accurately predict outcomes for patients with NSCLC after surgery. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12885-018-4881-9) contains supplementary material, which is available to authorized users.