Cargando…

Amino acid substitutions in CPC-LIKE MYB reveal residues important for protein stability in Arabidopsis roots

TRYPTICHON (TRY) and ENHANCER OF TRY AND CPC2 (ETC2) encode R3-type MYB transcription factors that are involved in epidermal cell differentiation in Arabidopsis thaliana. TRY and ETC2 belong to the CPC-like MYB gene family, which includes seven homolog genes. Previously, we showed that among the CPC...

Descripción completa

Detalles Bibliográficos
Autores principales: Yamada, Koh, Sasabe, Michiko, Fujikawa, Yukichi, Wada, Takuji, Tominaga-Wada, Rumi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6181395/
https://www.ncbi.nlm.nih.gov/pubmed/30308079
http://dx.doi.org/10.1371/journal.pone.0205522
Descripción
Sumario:TRYPTICHON (TRY) and ENHANCER OF TRY AND CPC2 (ETC2) encode R3-type MYB transcription factors that are involved in epidermal cell differentiation in Arabidopsis thaliana. TRY and ETC2 belong to the CPC-like MYB gene family, which includes seven homolog genes. Previously, we showed that among the CPC family members, TRY and ETC2 are characterized by rapid proteolysis compared with that of other members, and we demonstrated that this proteolysis is mediated by the proteasome-dependent pathway. In this study, we compared the functions of the wild-type TRY and ETC2 proteins and their amino acid-substituted versions. Our results showed that the substitution of amino acids in the C-terminal of TRY and ETC2 conferred them the ability to induce root hair formation. Furthermore, we confirmed that these mutations enhanced the stability of the TRY and ETC2 proteins. These results revealed that the amino acids, which are important for the functions of TRY and ETC2, mediate morphological pattern formation and can be useful in understanding the pathway determining the fate of root hair cells.