Cargando…

The effect of breastmilk and saliva combinations on the in vitro growth of oral pathogenic and commensal microorganisms

Neonates are exposed to microbes in utero and at birth, thereby establishing their microbiota (healthy microbial colonisers). Previously, we reported significant differences in the neonatal oral microbiota of breast-fed and formula-fed babies after first discovering a primal metabolic mechanism that...

Descripción completa

Detalles Bibliográficos
Autores principales: Sweeney, E. L., Al-Shehri, S. S., Cowley, D. M., Liley, H. G., Bansal, N., Charles, B. G., Shaw, P. N., Duley, J. A., Knox, C. L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6181944/
https://www.ncbi.nlm.nih.gov/pubmed/30310099
http://dx.doi.org/10.1038/s41598-018-33519-3
Descripción
Sumario:Neonates are exposed to microbes in utero and at birth, thereby establishing their microbiota (healthy microbial colonisers). Previously, we reported significant differences in the neonatal oral microbiota of breast-fed and formula-fed babies after first discovering a primal metabolic mechanism that occurs when breastmilk (containing the enzyme xanthine oxidase) and neonatal saliva (containing highly elevated concentrations of the substrates for xanthine oxidase: xanthine and hypoxanthine). The interaction of neonatal saliva and breast milk releases antibacterial compounds including hydrogen peroxide, and regulates the growth of bacteria. Using a novel in vitro experimental approach, the current study compared the effects of this unique metabolic pathway on a range of bacterial species and determined the period of time that microbial growth was affected. We demonstrated that microbial growth was inhibited predominately, immediately and for up to 24 hr following breastmilk and saliva mixing; however, some microorganisms were able to recover and continue to grow following exposure to these micromolar amounts of hydrogen peroxide. Interestingly, growth inhibition was independent of whether the organisms possessed a catalase enzyme. This study further confirms that this is one mechanism that contributes to the significant differences in the neonatal oral microbiota of breast-fed and formula-fed babies.