Cargando…
Development of lentiviral vectors for efficient glutamatergic-selective gene expression in cultured hippocampal neurons
Targeting gene expression to a particular subset of neurons helps study the cellular function of the nervous system. Although neuron-specific promoters, such as the synapsin I promoter and the α-CaMKII promoter, are known to exhibit selectivity for excitatory glutamatergic neurons in vivo, the cell...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6181963/ https://www.ncbi.nlm.nih.gov/pubmed/30310105 http://dx.doi.org/10.1038/s41598-018-33509-5 |
Sumario: | Targeting gene expression to a particular subset of neurons helps study the cellular function of the nervous system. Although neuron-specific promoters, such as the synapsin I promoter and the α-CaMKII promoter, are known to exhibit selectivity for excitatory glutamatergic neurons in vivo, the cell type-specificity of these promoters has not been thoroughly tested in culture preparations. Here, by using hippocampal culture preparation from the VGAT-Venus transgenic mice, we examined the ability of five putative promoter sequences of glutamatergic-selective markers including synapsin I, α-CaMKII, the vesicular glutamate transporter 1 (VGLUT1), Dock10 and Prox1. Among these, a genomic fragment containing a 2.1 kb segment upstream of the translation start site (TSS) of the VGLUT1 implemented in a lentiviral vector with the Tet-Off inducible system achieved the highest preferential gene expression in glutamatergic neurons. Analysis of various lengths of the VGLUT1 promoter regions identified a segment between −2.1 kb and −1.4 kb from the TSS as a responsible element for the glutamatergic selectivity. Consistently, expression of channelrhodopsin under this promoter sequence allowed for selective light-evoked activation of excitatory neurons. Thus, the lentiviral system carrying the VGLUT1 promoter fragment can be used to effectively target exogenous gene expression to excitatory glutamatergic neurons in cultures. |
---|