Cargando…
Faster R-CNN for Robust Pedestrian Detection Using Semantic Segmentation Network
Convolutional neural networks (CNN) have enabled significant improvements in pedestrian detection owing to the strong representation ability of the CNN features. However, it is generally difficult to reduce false positives on hard negative samples such as tree leaves, traffic lights, poles, etc. Som...
Autores principales: | Liu, Tianrui, Stathaki, Tania |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6182048/ https://www.ncbi.nlm.nih.gov/pubmed/30344486 http://dx.doi.org/10.3389/fnbot.2018.00064 |
Ejemplares similares
-
Pedestrian detection model based on Tiny-Yolov3 architecture for wearable devices to visually impaired assistance
por: Maya-Martínez, Sergio-Uriel, et al.
Publicado: (2023) -
Pedestrian Trust in Automated Vehicles: Role of Traffic Signal and AV Driving Behavior
por: Jayaraman, Suresh Kumaar, et al.
Publicado: (2019) -
Curvilinear Kirigami Skins Let Soft Bending Actuators Slither Faster
por: Branyan, Callie, et al.
Publicado: (2022) -
Toward Benchmarking of Long-Term Spatio-Temporal Maps of Pedestrian Flows for Human-Aware Navigation
por: Vintr, Tomáš, et al.
Publicado: (2022) -
Improving the Robustness of Online Social Networks: A Simulation Approach of Network Interventions
por: Casiraghi, Giona, et al.
Publicado: (2020)