Cargando…
DNA Topoisomerase 1 Structure-BASED Design, Synthesis, Activity Evaluation and Molecular Simulations Study of New 7-Amide Camptothecin Derivatives Against Spodoptera frugiperda
Camptothecin and its derivatives (CPTs) have strong toxicity to eukaryotic cells by targeting their DNA topoisomerase 1 (Top1) protein and have been increasingly explored as potential pesticides for plant protection. However, the detailed structure-binding mechanism of the interactions between CPTs...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6182061/ https://www.ncbi.nlm.nih.gov/pubmed/30345269 http://dx.doi.org/10.3389/fchem.2018.00456 |
_version_ | 1783362484946599936 |
---|---|
author | Jiang, Zhiyan Zhang, Zhijun Cui, Gaofeng Sun, Zhipeng Song, Gaopeng Liu, Yingqian Zhong, Guohua |
author_facet | Jiang, Zhiyan Zhang, Zhijun Cui, Gaofeng Sun, Zhipeng Song, Gaopeng Liu, Yingqian Zhong, Guohua |
author_sort | Jiang, Zhiyan |
collection | PubMed |
description | Camptothecin and its derivatives (CPTs) have strong toxicity to eukaryotic cells by targeting their DNA topoisomerase 1 (Top1) protein and have been increasingly explored as potential pesticides for plant protection. However, the detailed structure-binding mechanism of the interactions between CPTs and the insect Top1 protein remains unclear, which significantly hinders the development of novel CPTs as new insecticides. Herein, a series of 7-amide camptothecin analogs based on the binding mode of camptothecin in complex with Top1 (Sf Top1)-DNA from Spodoptera frugiperda cultured cell line Sf9 were designed and synthesized. Fifteen of these compounds exhibited excellent cytotoxic activity (values of IC(50) from 2.01 to 6.78 μM) compared with camptothecin (29.47 μM). The molecular simulations revealed the binding mechanism when the camptothecin parent rings were inserting parallel to DNA bases and stabling the ternary complex by π-π stacked and hydrogen-bond interactions, and further suggested that introduction of lipophilic and some electron-withdrawing groups on the amide linkage of camptothecin could be beneficial to its activity via some non-covalent interactions. Furthermore, almost all the synthesized compounds could inhibit the growth of Spodoptera litura larvae strongly (Inhibition rate from 50.20 to 79.05%), superior or comparable to camptothecin (55.69%) after 8 days of exposure. In particular, the compounds 4c, 4d, 4f, and 4j, which presented more than 70% inhibitory activities, were deserved to be developed as potential biorational pesticides. The information described here would be useful for the further design and development of potentially effective pesticides in the field of plant protection. |
format | Online Article Text |
id | pubmed-6182061 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-61820612018-10-19 DNA Topoisomerase 1 Structure-BASED Design, Synthesis, Activity Evaluation and Molecular Simulations Study of New 7-Amide Camptothecin Derivatives Against Spodoptera frugiperda Jiang, Zhiyan Zhang, Zhijun Cui, Gaofeng Sun, Zhipeng Song, Gaopeng Liu, Yingqian Zhong, Guohua Front Chem Chemistry Camptothecin and its derivatives (CPTs) have strong toxicity to eukaryotic cells by targeting their DNA topoisomerase 1 (Top1) protein and have been increasingly explored as potential pesticides for plant protection. However, the detailed structure-binding mechanism of the interactions between CPTs and the insect Top1 protein remains unclear, which significantly hinders the development of novel CPTs as new insecticides. Herein, a series of 7-amide camptothecin analogs based on the binding mode of camptothecin in complex with Top1 (Sf Top1)-DNA from Spodoptera frugiperda cultured cell line Sf9 were designed and synthesized. Fifteen of these compounds exhibited excellent cytotoxic activity (values of IC(50) from 2.01 to 6.78 μM) compared with camptothecin (29.47 μM). The molecular simulations revealed the binding mechanism when the camptothecin parent rings were inserting parallel to DNA bases and stabling the ternary complex by π-π stacked and hydrogen-bond interactions, and further suggested that introduction of lipophilic and some electron-withdrawing groups on the amide linkage of camptothecin could be beneficial to its activity via some non-covalent interactions. Furthermore, almost all the synthesized compounds could inhibit the growth of Spodoptera litura larvae strongly (Inhibition rate from 50.20 to 79.05%), superior or comparable to camptothecin (55.69%) after 8 days of exposure. In particular, the compounds 4c, 4d, 4f, and 4j, which presented more than 70% inhibitory activities, were deserved to be developed as potential biorational pesticides. The information described here would be useful for the further design and development of potentially effective pesticides in the field of plant protection. Frontiers Media S.A. 2018-10-05 /pmc/articles/PMC6182061/ /pubmed/30345269 http://dx.doi.org/10.3389/fchem.2018.00456 Text en Copyright © 2018 Jiang, Zhang, Cui, Sun, Song, Liu and Zhong. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Chemistry Jiang, Zhiyan Zhang, Zhijun Cui, Gaofeng Sun, Zhipeng Song, Gaopeng Liu, Yingqian Zhong, Guohua DNA Topoisomerase 1 Structure-BASED Design, Synthesis, Activity Evaluation and Molecular Simulations Study of New 7-Amide Camptothecin Derivatives Against Spodoptera frugiperda |
title | DNA Topoisomerase 1 Structure-BASED Design, Synthesis, Activity Evaluation and Molecular Simulations Study of New 7-Amide Camptothecin Derivatives Against Spodoptera frugiperda |
title_full | DNA Topoisomerase 1 Structure-BASED Design, Synthesis, Activity Evaluation and Molecular Simulations Study of New 7-Amide Camptothecin Derivatives Against Spodoptera frugiperda |
title_fullStr | DNA Topoisomerase 1 Structure-BASED Design, Synthesis, Activity Evaluation and Molecular Simulations Study of New 7-Amide Camptothecin Derivatives Against Spodoptera frugiperda |
title_full_unstemmed | DNA Topoisomerase 1 Structure-BASED Design, Synthesis, Activity Evaluation and Molecular Simulations Study of New 7-Amide Camptothecin Derivatives Against Spodoptera frugiperda |
title_short | DNA Topoisomerase 1 Structure-BASED Design, Synthesis, Activity Evaluation and Molecular Simulations Study of New 7-Amide Camptothecin Derivatives Against Spodoptera frugiperda |
title_sort | dna topoisomerase 1 structure-based design, synthesis, activity evaluation and molecular simulations study of new 7-amide camptothecin derivatives against spodoptera frugiperda |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6182061/ https://www.ncbi.nlm.nih.gov/pubmed/30345269 http://dx.doi.org/10.3389/fchem.2018.00456 |
work_keys_str_mv | AT jiangzhiyan dnatopoisomerase1structurebaseddesignsynthesisactivityevaluationandmolecularsimulationsstudyofnew7amidecamptothecinderivativesagainstspodopterafrugiperda AT zhangzhijun dnatopoisomerase1structurebaseddesignsynthesisactivityevaluationandmolecularsimulationsstudyofnew7amidecamptothecinderivativesagainstspodopterafrugiperda AT cuigaofeng dnatopoisomerase1structurebaseddesignsynthesisactivityevaluationandmolecularsimulationsstudyofnew7amidecamptothecinderivativesagainstspodopterafrugiperda AT sunzhipeng dnatopoisomerase1structurebaseddesignsynthesisactivityevaluationandmolecularsimulationsstudyofnew7amidecamptothecinderivativesagainstspodopterafrugiperda AT songgaopeng dnatopoisomerase1structurebaseddesignsynthesisactivityevaluationandmolecularsimulationsstudyofnew7amidecamptothecinderivativesagainstspodopterafrugiperda AT liuyingqian dnatopoisomerase1structurebaseddesignsynthesisactivityevaluationandmolecularsimulationsstudyofnew7amidecamptothecinderivativesagainstspodopterafrugiperda AT zhongguohua dnatopoisomerase1structurebaseddesignsynthesisactivityevaluationandmolecularsimulationsstudyofnew7amidecamptothecinderivativesagainstspodopterafrugiperda |