Cargando…

RNA-Binding Proteins in Amyotrophic Lateral Sclerosis

Significant research efforts are ongoing to elucidate the complex molecular mechanisms underlying amyotrophic lateral sclerosis (ALS), which may in turn pinpoint potential therapeutic targets for treatment. The ALS research field has evolved with recent discoveries of numerous genetic mutations in A...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Melody, Kim, Jihye Rachel, van Bruggen, Rebekah, Park, Jeehye
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Korean Society for Molecular and Cellular Biology 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6182225/
https://www.ncbi.nlm.nih.gov/pubmed/30157547
http://dx.doi.org/10.14348/molcells.2018.0243
Descripción
Sumario:Significant research efforts are ongoing to elucidate the complex molecular mechanisms underlying amyotrophic lateral sclerosis (ALS), which may in turn pinpoint potential therapeutic targets for treatment. The ALS research field has evolved with recent discoveries of numerous genetic mutations in ALS patients, many of which are in genes encoding RNA binding proteins (RBPs), including TDP-43, FUS, ATXN2, TAF15, EWSR1, hnRNPA1, hnRNPA2/B1, MATR3 and TIA1. Accumulating evidence from studies on these ALS-linked RBPs suggests that dysregulation of RNA metabolism, cytoplasmic mislocalization of RBPs, dysfunction in stress granule dynamics of RBPs and increased propensity of mutant RBPs to aggregate may lead to ALS pathogenesis. Here, we review current knowledge of the biological function of these RBPs and the contributions of ALS-linked mutations to disease pathogenesis.