Cargando…
A pulse of summer precipitation after the dry season triggers changes in ectomycorrhizal formation, diversity, and community composition in a Mediterranean forest in California, USA
Rapid responses of microbial biomass and community composition following a precipitation event have been reported for soil bacteria and fungi, but measurements characterizing ectomycorrhizal fungi remain limited. The response of ectomycorrhizal fungi after a precipitation event is crucial to underst...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6182365/ https://www.ncbi.nlm.nih.gov/pubmed/30105498 http://dx.doi.org/10.1007/s00572-018-0859-3 |
Sumario: | Rapid responses of microbial biomass and community composition following a precipitation event have been reported for soil bacteria and fungi, but measurements characterizing ectomycorrhizal fungi remain limited. The response of ectomycorrhizal fungi after a precipitation event is crucial to understanding biogeochemical cycles and plant nutrition. Here, we examined changes in ectomycorrhizal formation, diversity, and community composition at the end of a summer drought and following precipitation events in a conifer–oak mixed forest under a semiarid, Mediterranean-type climate in CA, USA. To study the effects of different amounts of precipitation, a water addition treatment was also undertaken. Ectomycorrhizal fungal diversity and community composition changed within 6 days following precipitation, with increased simultaneous mortality and re-growth. Ectomycorrhizal diversity increased and community composition changed both in the natural rainfall (less than 10 mm) and water addition (50 mm) treatments, but larger decreases in ectomycorrhizal diversity were observed from 9 to 16 days after precipitation in the water addition treatment. The changes were primarily a shift in richness and abundance of Basidiomycota species, indicating higher drought sensitivity of Basidiomycota species compared with Ascomycota species. Our results indicate that ectomycorrhizal formation, diversity, and community composition rapidly respond to both precipitation events and to the amount of precipitation. These changes affect ecosystem functions, such as nutrient cycling, decomposition, and plant nutrient uptake, in semiarid regions. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s00572-018-0859-3) contains supplementary material, which is available to authorized users. |
---|