Cargando…
Sobolev type inequalities for compact metric graphs
In this paper analogues of Sobolev inequalities for compact and connected metric graphs are derived. As a consequence of these inequalities, a lower bound, commonly known as Cheeger inequality, on the first non-zero eigenvalue of the Laplace operator with standard vertex conditions is recovered.
Autor principal: | Usman, Muhammad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6182407/ https://www.ncbi.nlm.nih.gov/pubmed/30363811 http://dx.doi.org/10.1186/s13660-018-1872-y |
Ejemplares similares
Ejemplares similares
-
Aspects of Sobolev-type inequalities
por: Saloff-Coste, Laurent
Publicado: (2001) -
Inequalities Based on Sobolev Representations
por: Anastassiou, George A
Publicado: (2011) -
Some connections between isoperimetric and Sobolev-type inequalities
por: Bobkov, guei G, et al.
Publicado: (1997) -
Poincaré and Log–Sobolev Inequalities for Mixtures
por: Schlichting, André
Publicado: (2019) -
The refinement and generalization of Hardy’s inequality in Sobolev space
por: Xue, Xiaomin, et al.
Publicado: (2018)