Cargando…
Error analysis for [Formula: see text] -coefficient regularized moving least-square regression
We consider the moving least-square (MLS) method by the coefficient-based regression framework with [Formula: see text] -regularizer [Formula: see text] and the sample dependent hypothesis spaces. The data dependent characteristic of the new algorithm provides flexibility and adaptivity for MLS. We...
Autores principales: | Guo, Qin, Ye, Peixin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6182408/ https://www.ncbi.nlm.nih.gov/pubmed/30363815 http://dx.doi.org/10.1186/s13660-018-1856-y |
Ejemplares similares
-
[Formula: see text] -regularized recursive total least squares based sparse system identification for the error-in-variables
por: Lim, Jun-seok, et al.
Publicado: (2016) -
Convergence rate for the moving least-squares learning with dependent sampling
por: Guo, Qin, et al.
Publicado: (2018) -
To [Formula: see text] , or not to [Formula: see text] : recent developments and comparisons of regularization schemes
por: Gnendiger, C., et al.
Publicado: (2017) -
Realizing [Formula: see text]-regular Hyperproperties
por: Finkbeiner, Bernd, et al.
Publicado: (2020) -
Standardized Regression Coefficients and Newly Proposed Estimators for [Formula: see text] in Multiply Imputed Data
por: van Ginkel, Joost R.
Publicado: (2020)