Cargando…
Wavelet optimal estimations for a two-dimensional continuous-discrete density function over [Formula: see text] risk
The mixed continuous-discrete density model plays an important role in reliability, finance, biostatistics, and economics. Using wavelets methods, Chesneau, Dewan, and Doosti provide upper bounds of wavelet estimations on [Formula: see text] risk for a two-dimensional continuous-discrete density fun...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6182424/ https://www.ncbi.nlm.nih.gov/pubmed/30363759 http://dx.doi.org/10.1186/s13660-018-1868-7 |
Sumario: | The mixed continuous-discrete density model plays an important role in reliability, finance, biostatistics, and economics. Using wavelets methods, Chesneau, Dewan, and Doosti provide upper bounds of wavelet estimations on [Formula: see text] risk for a two-dimensional continuous-discrete density function over Besov spaces [Formula: see text] . This paper deals with [Formula: see text] ([Formula: see text] ) risk estimations over Besov space, which generalizes Chesneau–Dewan–Doosti’s theorems. In addition, we firstly provide a lower bound of [Formula: see text] risk. It turns out that the linear wavelet estimator attains the optimal convergence rate for [Formula: see text] , and the nonlinear one offers optimal estimation up to a logarithmic factor. |
---|