Cargando…

Wavelet optimal estimations for a two-dimensional continuous-discrete density function over [Formula: see text] risk

The mixed continuous-discrete density model plays an important role in reliability, finance, biostatistics, and economics. Using wavelets methods, Chesneau, Dewan, and Doosti provide upper bounds of wavelet estimations on [Formula: see text] risk for a two-dimensional continuous-discrete density fun...

Descripción completa

Detalles Bibliográficos
Autores principales: Hu, Lin, Zeng, Xiaochen, Wang, Jinru
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6182424/
https://www.ncbi.nlm.nih.gov/pubmed/30363759
http://dx.doi.org/10.1186/s13660-018-1868-7
Descripción
Sumario:The mixed continuous-discrete density model plays an important role in reliability, finance, biostatistics, and economics. Using wavelets methods, Chesneau, Dewan, and Doosti provide upper bounds of wavelet estimations on [Formula: see text] risk for a two-dimensional continuous-discrete density function over Besov spaces [Formula: see text] . This paper deals with [Formula: see text] ([Formula: see text] ) risk estimations over Besov space, which generalizes Chesneau–Dewan–Doosti’s theorems. In addition, we firstly provide a lower bound of [Formula: see text] risk. It turns out that the linear wavelet estimator attains the optimal convergence rate for [Formula: see text] , and the nonlinear one offers optimal estimation up to a logarithmic factor.