Cargando…

Approximation by [Formula: see text] -Lupaş–Schurer–Kantorovich operators

In the current paper, we examine the [Formula: see text] -analogue of Kantorovich type Lupaş–Schurer operators with the help of [Formula: see text] -Jackson integral. Then, we estimate the rate of convergence for the constructed operators by using the modulus of continuity in terms of a Lipschitz cl...

Descripción completa

Detalles Bibliográficos
Autores principales: Kanat, Kadir, Sofyalıoğlu, Melek
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6182429/
https://www.ncbi.nlm.nih.gov/pubmed/30363786
http://dx.doi.org/10.1186/s13660-018-1858-9
_version_ 1783362561799880704
author Kanat, Kadir
Sofyalıoğlu, Melek
author_facet Kanat, Kadir
Sofyalıoğlu, Melek
author_sort Kanat, Kadir
collection PubMed
description In the current paper, we examine the [Formula: see text] -analogue of Kantorovich type Lupaş–Schurer operators with the help of [Formula: see text] -Jackson integral. Then, we estimate the rate of convergence for the constructed operators by using the modulus of continuity in terms of a Lipschitz class function and by means of Peetre’s K-functionals based on Korovkin theorem. Moreover, we illustrate the approximation of the [Formula: see text] -Lupaş–Schurer–Kantorovich operators to appointed functions by the help of Matlab algorithm and then show the comparison of the convergence of these operators with Lupaş–Schurer operators based on [Formula: see text] -integers.
format Online
Article
Text
id pubmed-6182429
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Springer International Publishing
record_format MEDLINE/PubMed
spelling pubmed-61824292018-10-22 Approximation by [Formula: see text] -Lupaş–Schurer–Kantorovich operators Kanat, Kadir Sofyalıoğlu, Melek J Inequal Appl Research In the current paper, we examine the [Formula: see text] -analogue of Kantorovich type Lupaş–Schurer operators with the help of [Formula: see text] -Jackson integral. Then, we estimate the rate of convergence for the constructed operators by using the modulus of continuity in terms of a Lipschitz class function and by means of Peetre’s K-functionals based on Korovkin theorem. Moreover, we illustrate the approximation of the [Formula: see text] -Lupaş–Schurer–Kantorovich operators to appointed functions by the help of Matlab algorithm and then show the comparison of the convergence of these operators with Lupaş–Schurer operators based on [Formula: see text] -integers. Springer International Publishing 2018-09-26 2018 /pmc/articles/PMC6182429/ /pubmed/30363786 http://dx.doi.org/10.1186/s13660-018-1858-9 Text en © The Author(s) 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
spellingShingle Research
Kanat, Kadir
Sofyalıoğlu, Melek
Approximation by [Formula: see text] -Lupaş–Schurer–Kantorovich operators
title Approximation by [Formula: see text] -Lupaş–Schurer–Kantorovich operators
title_full Approximation by [Formula: see text] -Lupaş–Schurer–Kantorovich operators
title_fullStr Approximation by [Formula: see text] -Lupaş–Schurer–Kantorovich operators
title_full_unstemmed Approximation by [Formula: see text] -Lupaş–Schurer–Kantorovich operators
title_short Approximation by [Formula: see text] -Lupaş–Schurer–Kantorovich operators
title_sort approximation by [formula: see text] -lupaş–schurer–kantorovich operators
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6182429/
https://www.ncbi.nlm.nih.gov/pubmed/30363786
http://dx.doi.org/10.1186/s13660-018-1858-9
work_keys_str_mv AT kanatkadir approximationbyformulaseetextlupasschurerkantorovichoperators
AT sofyalıoglumelek approximationbyformulaseetextlupasschurerkantorovichoperators