Cargando…

Best approximation of functions in generalized Hölder class

Here, for the first time, error estimation of the functions [Formula: see text] and [Formula: see text] classes using [Formula: see text] method of F. S. (Fourier Series) and C. F. S. (Conjugate Fourier Series), respectively, are determined. The results of (Dhakal in Int. Math. Forum 5(35):1729–1735...

Descripción completa

Detalles Bibliográficos
Autores principales: Nigam, H. K., Hadish, Md.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6182430/
https://www.ncbi.nlm.nih.gov/pubmed/30363758
http://dx.doi.org/10.1186/s13660-018-1864-y
_version_ 1783362562035810304
author Nigam, H. K.
Hadish, Md.
author_facet Nigam, H. K.
Hadish, Md.
author_sort Nigam, H. K.
collection PubMed
description Here, for the first time, error estimation of the functions [Formula: see text] and [Formula: see text] classes using [Formula: see text] method of F. S. (Fourier Series) and C. F. S. (Conjugate Fourier Series), respectively, are determined. The results of (Dhakal in Int. Math. Forum 5(35):1729–1735, 2010; Dhakal in Int. J. Eng. Technol. 2(3):1–15, 2013; Kushwaha and Dhakal in Nepal J. Sci. Technol. 14(2):117–122, 2013) become the particular cases of our Theorem 2.1. Some important corollaries are also deduced from our main theorems.
format Online
Article
Text
id pubmed-6182430
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Springer International Publishing
record_format MEDLINE/PubMed
spelling pubmed-61824302018-10-22 Best approximation of functions in generalized Hölder class Nigam, H. K. Hadish, Md. J Inequal Appl Research Here, for the first time, error estimation of the functions [Formula: see text] and [Formula: see text] classes using [Formula: see text] method of F. S. (Fourier Series) and C. F. S. (Conjugate Fourier Series), respectively, are determined. The results of (Dhakal in Int. Math. Forum 5(35):1729–1735, 2010; Dhakal in Int. J. Eng. Technol. 2(3):1–15, 2013; Kushwaha and Dhakal in Nepal J. Sci. Technol. 14(2):117–122, 2013) become the particular cases of our Theorem 2.1. Some important corollaries are also deduced from our main theorems. Springer International Publishing 2018-10-11 2018 /pmc/articles/PMC6182430/ /pubmed/30363758 http://dx.doi.org/10.1186/s13660-018-1864-y Text en © The Author(s) 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
spellingShingle Research
Nigam, H. K.
Hadish, Md.
Best approximation of functions in generalized Hölder class
title Best approximation of functions in generalized Hölder class
title_full Best approximation of functions in generalized Hölder class
title_fullStr Best approximation of functions in generalized Hölder class
title_full_unstemmed Best approximation of functions in generalized Hölder class
title_short Best approximation of functions in generalized Hölder class
title_sort best approximation of functions in generalized hölder class
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6182430/
https://www.ncbi.nlm.nih.gov/pubmed/30363758
http://dx.doi.org/10.1186/s13660-018-1864-y
work_keys_str_mv AT nigamhk bestapproximationoffunctionsingeneralizedholderclass
AT hadishmd bestapproximationoffunctionsingeneralizedholderclass