Cargando…
Best approximation of functions in generalized Hölder class
Here, for the first time, error estimation of the functions [Formula: see text] and [Formula: see text] classes using [Formula: see text] method of F. S. (Fourier Series) and C. F. S. (Conjugate Fourier Series), respectively, are determined. The results of (Dhakal in Int. Math. Forum 5(35):1729–1735...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6182430/ https://www.ncbi.nlm.nih.gov/pubmed/30363758 http://dx.doi.org/10.1186/s13660-018-1864-y |
_version_ | 1783362562035810304 |
---|---|
author | Nigam, H. K. Hadish, Md. |
author_facet | Nigam, H. K. Hadish, Md. |
author_sort | Nigam, H. K. |
collection | PubMed |
description | Here, for the first time, error estimation of the functions [Formula: see text] and [Formula: see text] classes using [Formula: see text] method of F. S. (Fourier Series) and C. F. S. (Conjugate Fourier Series), respectively, are determined. The results of (Dhakal in Int. Math. Forum 5(35):1729–1735, 2010; Dhakal in Int. J. Eng. Technol. 2(3):1–15, 2013; Kushwaha and Dhakal in Nepal J. Sci. Technol. 14(2):117–122, 2013) become the particular cases of our Theorem 2.1. Some important corollaries are also deduced from our main theorems. |
format | Online Article Text |
id | pubmed-6182430 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Springer International Publishing |
record_format | MEDLINE/PubMed |
spelling | pubmed-61824302018-10-22 Best approximation of functions in generalized Hölder class Nigam, H. K. Hadish, Md. J Inequal Appl Research Here, for the first time, error estimation of the functions [Formula: see text] and [Formula: see text] classes using [Formula: see text] method of F. S. (Fourier Series) and C. F. S. (Conjugate Fourier Series), respectively, are determined. The results of (Dhakal in Int. Math. Forum 5(35):1729–1735, 2010; Dhakal in Int. J. Eng. Technol. 2(3):1–15, 2013; Kushwaha and Dhakal in Nepal J. Sci. Technol. 14(2):117–122, 2013) become the particular cases of our Theorem 2.1. Some important corollaries are also deduced from our main theorems. Springer International Publishing 2018-10-11 2018 /pmc/articles/PMC6182430/ /pubmed/30363758 http://dx.doi.org/10.1186/s13660-018-1864-y Text en © The Author(s) 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Research Nigam, H. K. Hadish, Md. Best approximation of functions in generalized Hölder class |
title | Best approximation of functions in generalized Hölder class |
title_full | Best approximation of functions in generalized Hölder class |
title_fullStr | Best approximation of functions in generalized Hölder class |
title_full_unstemmed | Best approximation of functions in generalized Hölder class |
title_short | Best approximation of functions in generalized Hölder class |
title_sort | best approximation of functions in generalized hölder class |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6182430/ https://www.ncbi.nlm.nih.gov/pubmed/30363758 http://dx.doi.org/10.1186/s13660-018-1864-y |
work_keys_str_mv | AT nigamhk bestapproximationoffunctionsingeneralizedholderclass AT hadishmd bestapproximationoffunctionsingeneralizedholderclass |