Cargando…
Chimera: enabling hierarchy based multi-objective optimization for self-driving laboratories
Finding the ideal conditions satisfying multiple pre-defined targets simultaneously is a challenging decision-making process, which impacts science, engineering, and economics. Additional complexity arises for tasks involving experimentation or expensive computations, as the number of evaluated cond...
Autores principales: | Häse, Florian, Roch, Loïc M., Aspuru-Guzik, Alán |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Royal Society of Chemistry
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6182568/ https://www.ncbi.nlm.nih.gov/pubmed/30393525 http://dx.doi.org/10.1039/c8sc02239a |
Ejemplares similares
-
Phoenics: A Bayesian Optimizer for Chemistry
por: Häse, Florian, et al.
Publicado: (2018) -
Designing and understanding light-harvesting devices with machine learning
por: Häse, Florian, et al.
Publicado: (2020) -
Self-driving laboratories: A paradigm shift in nanomedicine development
por: Hickman, Riley J., et al.
Publicado: (2023) -
Golem: an algorithm for robust experiment and process optimization
por: Aldeghi, Matteo, et al.
Publicado: (2021) -
Machine learning for quantum dynamics: deep learning of excitation energy transfer properties
por: Häse, Florian, et al.
Publicado: (2017)