Cargando…

Human trampling as short-term disturbance on intertidal mudflats: effects on macrofauna biodiversity and population dynamics of bivalves

The effect of physical disturbance in the form of trampling on the benthic environment of an intertidal mudflat was investigated. Intense trampling was created as unintended side-effect by benthic ecologists during field experiments in spring and summer 2005, when a mid-shore area of 25 × 25 m was v...

Descripción completa

Detalles Bibliográficos
Autores principales: Rossi, F., Forster, R. M., Montserrat, F., Ponti, M., Terlizzi, A., Ysebaert, T., Middelburg, J. J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2007
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6182602/
https://www.ncbi.nlm.nih.gov/pubmed/30363814
http://dx.doi.org/10.1007/s00227-007-0641-0
_version_ 1783362603409473536
author Rossi, F.
Forster, R. M.
Montserrat, F.
Ponti, M.
Terlizzi, A.
Ysebaert, T.
Middelburg, J. J.
author_facet Rossi, F.
Forster, R. M.
Montserrat, F.
Ponti, M.
Terlizzi, A.
Ysebaert, T.
Middelburg, J. J.
author_sort Rossi, F.
collection PubMed
description The effect of physical disturbance in the form of trampling on the benthic environment of an intertidal mudflat was investigated. Intense trampling was created as unintended side-effect by benthic ecologists during field experiments in spring and summer 2005, when a mid-shore area of 25 × 25 m was visited twice per month by on average five researchers for a period of 8 months. At the putatively-impacted location (I) (25 × 25 m) and two nearby control locations (Cs) (25 × 25 m each), three sites (4 × 4 m) were randomly selected and at each site, three plots (50 × 50 cm) were sampled after 18 and 40 days from the end of the disturbance. Multivariate and univariate asymmetrical analyses tested for changes in the macrofaunal assemblage, biomass of microphytobenthos and various sediment properties (grain-size, water content, NH(4) and NO(3) concentrations in the pore water) between the two control locations (Cs) and the putatively-impacted location (I). There were no detectable changes in the sediment properties and microphytobenthos biomass, but variability at small scale was observed. Microphytobenthos and NH(4) were correlated at I to the number of footprints, as estimated by the percentage cover of physical depressions. This indicated that trampling could have an impact at small scales, but more investigation is needed. Trampling, instead, clearly modified the abundance and population dynamics of the clam Macoma balthica (L.) and the cockle Cerastoderma edule (L.). There was a negative impact on adults of both species, probably because footsteps directly killed or buried the animals, provoking asphyxia. Conversely, trampling indirectly enhanced recruitment rate of M. balthica, while small-sized C. edule did not react to the trampling. It was likely that small animals could recover more quickly because trampling occurred during the growing season and there was a continuous supply of larvae and juveniles. In addition, trampling might have weakened negative adult-juvenile interactions between adult cockles and juvenile M. balthica, thus facilitating the recruitment. Our findings indicated that human trampling is a relevant source of disturbance for the conservation and management of mudflats. During the growing season recovery can be fast, but in the long-term it might lead towards the dominance of M. balthica to the cost of C. edule, thereby affecting ecosystem functioning.
format Online
Article
Text
id pubmed-6182602
institution National Center for Biotechnology Information
language English
publishDate 2007
publisher Springer Berlin Heidelberg
record_format MEDLINE/PubMed
spelling pubmed-61826022018-10-22 Human trampling as short-term disturbance on intertidal mudflats: effects on macrofauna biodiversity and population dynamics of bivalves Rossi, F. Forster, R. M. Montserrat, F. Ponti, M. Terlizzi, A. Ysebaert, T. Middelburg, J. J. Mar Biol Research Article The effect of physical disturbance in the form of trampling on the benthic environment of an intertidal mudflat was investigated. Intense trampling was created as unintended side-effect by benthic ecologists during field experiments in spring and summer 2005, when a mid-shore area of 25 × 25 m was visited twice per month by on average five researchers for a period of 8 months. At the putatively-impacted location (I) (25 × 25 m) and two nearby control locations (Cs) (25 × 25 m each), three sites (4 × 4 m) were randomly selected and at each site, three plots (50 × 50 cm) were sampled after 18 and 40 days from the end of the disturbance. Multivariate and univariate asymmetrical analyses tested for changes in the macrofaunal assemblage, biomass of microphytobenthos and various sediment properties (grain-size, water content, NH(4) and NO(3) concentrations in the pore water) between the two control locations (Cs) and the putatively-impacted location (I). There were no detectable changes in the sediment properties and microphytobenthos biomass, but variability at small scale was observed. Microphytobenthos and NH(4) were correlated at I to the number of footprints, as estimated by the percentage cover of physical depressions. This indicated that trampling could have an impact at small scales, but more investigation is needed. Trampling, instead, clearly modified the abundance and population dynamics of the clam Macoma balthica (L.) and the cockle Cerastoderma edule (L.). There was a negative impact on adults of both species, probably because footsteps directly killed or buried the animals, provoking asphyxia. Conversely, trampling indirectly enhanced recruitment rate of M. balthica, while small-sized C. edule did not react to the trampling. It was likely that small animals could recover more quickly because trampling occurred during the growing season and there was a continuous supply of larvae and juveniles. In addition, trampling might have weakened negative adult-juvenile interactions between adult cockles and juvenile M. balthica, thus facilitating the recruitment. Our findings indicated that human trampling is a relevant source of disturbance for the conservation and management of mudflats. During the growing season recovery can be fast, but in the long-term it might lead towards the dominance of M. balthica to the cost of C. edule, thereby affecting ecosystem functioning. Springer Berlin Heidelberg 2007-02-22 2007 /pmc/articles/PMC6182602/ /pubmed/30363814 http://dx.doi.org/10.1007/s00227-007-0641-0 Text en © Springer-Verlag 2007
spellingShingle Research Article
Rossi, F.
Forster, R. M.
Montserrat, F.
Ponti, M.
Terlizzi, A.
Ysebaert, T.
Middelburg, J. J.
Human trampling as short-term disturbance on intertidal mudflats: effects on macrofauna biodiversity and population dynamics of bivalves
title Human trampling as short-term disturbance on intertidal mudflats: effects on macrofauna biodiversity and population dynamics of bivalves
title_full Human trampling as short-term disturbance on intertidal mudflats: effects on macrofauna biodiversity and population dynamics of bivalves
title_fullStr Human trampling as short-term disturbance on intertidal mudflats: effects on macrofauna biodiversity and population dynamics of bivalves
title_full_unstemmed Human trampling as short-term disturbance on intertidal mudflats: effects on macrofauna biodiversity and population dynamics of bivalves
title_short Human trampling as short-term disturbance on intertidal mudflats: effects on macrofauna biodiversity and population dynamics of bivalves
title_sort human trampling as short-term disturbance on intertidal mudflats: effects on macrofauna biodiversity and population dynamics of bivalves
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6182602/
https://www.ncbi.nlm.nih.gov/pubmed/30363814
http://dx.doi.org/10.1007/s00227-007-0641-0
work_keys_str_mv AT rossif humantramplingasshorttermdisturbanceonintertidalmudflatseffectsonmacrofaunabiodiversityandpopulationdynamicsofbivalves
AT forsterrm humantramplingasshorttermdisturbanceonintertidalmudflatseffectsonmacrofaunabiodiversityandpopulationdynamicsofbivalves
AT montserratf humantramplingasshorttermdisturbanceonintertidalmudflatseffectsonmacrofaunabiodiversityandpopulationdynamicsofbivalves
AT pontim humantramplingasshorttermdisturbanceonintertidalmudflatseffectsonmacrofaunabiodiversityandpopulationdynamicsofbivalves
AT terlizzia humantramplingasshorttermdisturbanceonintertidalmudflatseffectsonmacrofaunabiodiversityandpopulationdynamicsofbivalves
AT ysebaertt humantramplingasshorttermdisturbanceonintertidalmudflatseffectsonmacrofaunabiodiversityandpopulationdynamicsofbivalves
AT middelburgjj humantramplingasshorttermdisturbanceonintertidalmudflatseffectsonmacrofaunabiodiversityandpopulationdynamicsofbivalves