Cargando…
Extended methods for influence maximization in dynamic networks
BACKGROUND: The process of rumor spreading among people can be represented as information diffusion in social network. The scale of rumor spread changes greatly depending on starting nodes. If we can select nodes that contribute to large-scale diffusion, the nodes are expected to be important for vi...
Autores principales: | Murata, Tsuyoshi, Koga, Hokuto |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6182688/ https://www.ncbi.nlm.nih.gov/pubmed/30370206 http://dx.doi.org/10.1186/s40649-018-0056-8 |
Ejemplares similares
-
Maximal Clique Based Influence Maximization in Networks
por: Mhadhbi, Nizar, et al.
Publicado: (2020) -
Influence maximization in Boolean networks
por: Parmer, Thomas, et al.
Publicado: (2022) -
An Influence Maximization Algorithm for Dynamic Social Networks Based on Effective Links
por: Fu, Baojun, et al.
Publicado: (2022) -
Vulnerability of deep neural networks for detecting COVID-19 cases from chest X-ray images to universal adversarial attacks
por: Hirano, Hokuto, et al.
Publicado: (2020) -
MATI: An efficient algorithm for influence maximization in social networks
por: Rossi, Maria-Evgenia G., et al.
Publicado: (2018)