Cargando…

Reduction of quantum systems and the local Gauss law

We give an operator-algebraic interpretation of the notion of an ideal generated by the unbounded operators associated with the elements of the Lie algebra of a Lie group that implements the symmetries of a quantum system. We use this interpretation to establish a link between Rieffel induction and...

Descripción completa

Detalles Bibliográficos
Autores principales: Stienstra, Ruben, van Suijlekom, Walter D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Netherlands 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6182777/
https://www.ncbi.nlm.nih.gov/pubmed/30369712
http://dx.doi.org/10.1007/s11005-018-1092-x
Descripción
Sumario:We give an operator-algebraic interpretation of the notion of an ideal generated by the unbounded operators associated with the elements of the Lie algebra of a Lie group that implements the symmetries of a quantum system. We use this interpretation to establish a link between Rieffel induction and the implementation of a local Gauss law in lattice gauge theories similar to the method discussed by Kijowski and Rudolph (J Math Phys 43:1796–1808, 2002; J Math Phys 46:032303, 2004).