Cargando…
Reduction of quantum systems and the local Gauss law
We give an operator-algebraic interpretation of the notion of an ideal generated by the unbounded operators associated with the elements of the Lie algebra of a Lie group that implements the symmetries of a quantum system. We use this interpretation to establish a link between Rieffel induction and...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Netherlands
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6182777/ https://www.ncbi.nlm.nih.gov/pubmed/30369712 http://dx.doi.org/10.1007/s11005-018-1092-x |
Sumario: | We give an operator-algebraic interpretation of the notion of an ideal generated by the unbounded operators associated with the elements of the Lie algebra of a Lie group that implements the symmetries of a quantum system. We use this interpretation to establish a link between Rieffel induction and the implementation of a local Gauss law in lattice gauge theories similar to the method discussed by Kijowski and Rudolph (J Math Phys 43:1796–1808, 2002; J Math Phys 46:032303, 2004). |
---|