Cargando…
Characterization of and genetic variation for tomato seed thermo-inhibition and thermo-dormancy
BACKGROUND: Exposing imbibed seeds to high temperatures may lead to either thermo-inhibition of germination or thermo-dormancy responses. In thermo-inhibition, seed germination is inhibited but quickly resumed when temperatures are lowered. Upon prolonged exposure to elevated temperatures, thermo-do...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6182833/ https://www.ncbi.nlm.nih.gov/pubmed/30309320 http://dx.doi.org/10.1186/s12870-018-1455-6 |
_version_ | 1783362656491536384 |
---|---|
author | Geshnizjani, Nafiseh Ghaderi-Far, Farshid Willems, Leo A J Hilhorst, Henk W M Ligterink, Wilco |
author_facet | Geshnizjani, Nafiseh Ghaderi-Far, Farshid Willems, Leo A J Hilhorst, Henk W M Ligterink, Wilco |
author_sort | Geshnizjani, Nafiseh |
collection | PubMed |
description | BACKGROUND: Exposing imbibed seeds to high temperatures may lead to either thermo-inhibition of germination or thermo-dormancy responses. In thermo-inhibition, seed germination is inhibited but quickly resumed when temperatures are lowered. Upon prolonged exposure to elevated temperatures, thermo-dormancy may be induced and seeds are not able to germinate even at optimal temperatures. In order to explore underlying physiological and molecular aspects of thermo-induced secondary dormancy, we have investigated the physiological responses of tomato seeds to elevated temperatures and the molecular mechanisms that could explain the performance of tomato seeds at elevated temperature. RESULTS: In order to investigate how tomato seeds respond to high temperature we used two distinct tomato accessions: Solanum lycopersicum (cv. Moneymaker) (MM) and Solanum pimpinellifolium accession CGN14498 (PI). MM seeds did not germinate under high temperature conditions while seeds of PI reached a maximum germination of 80%. Despite the high germination percentage of PI, germinated seeds did not produce healthy seedling at 37 °C. By using a candidate gene approach we have tested if similar molecular pathways (abscisic acid (ABA) and gibberellic acid (GA)) present in lettuce and Arabidopsis, are regulating thermo-inhibition and thermo-dormancy responses in tomato. We showed that the ABA biosynthesis pathway genes NCED1 and NCED9 were upregulated whereas two of the GA-biosynthesis regulators (GA3ox1 and GA20ox1) were downregulated in tomato thermo-dormant seeds at elevated temperature. To identify novel regulators of tomato seed performance under high temperature, we screened a Recombinant Inbred Line (RIL) population derived from a cross between the two tomato accessions MM and PI for thermo-inhibition and dormancy induction. Several QTLs were detected, particularly for thermo-dormancy, which may be caused by new regulators of thermo-inhibition and thermo-dormancy in tomato. CONCLUSIONS: None of the genes studied in this research were co-locating with the detected QTLs. The new QTLs discovered in this study will therefore be useful to further elucidate the molecular mechanisms underlying the responses of tomato seeds to high temperature and eventually lead to identification of the causal genes regulating these responses. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12870-018-1455-6) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-6182833 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-61828332018-10-18 Characterization of and genetic variation for tomato seed thermo-inhibition and thermo-dormancy Geshnizjani, Nafiseh Ghaderi-Far, Farshid Willems, Leo A J Hilhorst, Henk W M Ligterink, Wilco BMC Plant Biol Research Article BACKGROUND: Exposing imbibed seeds to high temperatures may lead to either thermo-inhibition of germination or thermo-dormancy responses. In thermo-inhibition, seed germination is inhibited but quickly resumed when temperatures are lowered. Upon prolonged exposure to elevated temperatures, thermo-dormancy may be induced and seeds are not able to germinate even at optimal temperatures. In order to explore underlying physiological and molecular aspects of thermo-induced secondary dormancy, we have investigated the physiological responses of tomato seeds to elevated temperatures and the molecular mechanisms that could explain the performance of tomato seeds at elevated temperature. RESULTS: In order to investigate how tomato seeds respond to high temperature we used two distinct tomato accessions: Solanum lycopersicum (cv. Moneymaker) (MM) and Solanum pimpinellifolium accession CGN14498 (PI). MM seeds did not germinate under high temperature conditions while seeds of PI reached a maximum germination of 80%. Despite the high germination percentage of PI, germinated seeds did not produce healthy seedling at 37 °C. By using a candidate gene approach we have tested if similar molecular pathways (abscisic acid (ABA) and gibberellic acid (GA)) present in lettuce and Arabidopsis, are regulating thermo-inhibition and thermo-dormancy responses in tomato. We showed that the ABA biosynthesis pathway genes NCED1 and NCED9 were upregulated whereas two of the GA-biosynthesis regulators (GA3ox1 and GA20ox1) were downregulated in tomato thermo-dormant seeds at elevated temperature. To identify novel regulators of tomato seed performance under high temperature, we screened a Recombinant Inbred Line (RIL) population derived from a cross between the two tomato accessions MM and PI for thermo-inhibition and dormancy induction. Several QTLs were detected, particularly for thermo-dormancy, which may be caused by new regulators of thermo-inhibition and thermo-dormancy in tomato. CONCLUSIONS: None of the genes studied in this research were co-locating with the detected QTLs. The new QTLs discovered in this study will therefore be useful to further elucidate the molecular mechanisms underlying the responses of tomato seeds to high temperature and eventually lead to identification of the causal genes regulating these responses. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12870-018-1455-6) contains supplementary material, which is available to authorized users. BioMed Central 2018-10-11 /pmc/articles/PMC6182833/ /pubmed/30309320 http://dx.doi.org/10.1186/s12870-018-1455-6 Text en © The Author(s). 2018 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Article Geshnizjani, Nafiseh Ghaderi-Far, Farshid Willems, Leo A J Hilhorst, Henk W M Ligterink, Wilco Characterization of and genetic variation for tomato seed thermo-inhibition and thermo-dormancy |
title | Characterization of and genetic variation for tomato seed thermo-inhibition and thermo-dormancy |
title_full | Characterization of and genetic variation for tomato seed thermo-inhibition and thermo-dormancy |
title_fullStr | Characterization of and genetic variation for tomato seed thermo-inhibition and thermo-dormancy |
title_full_unstemmed | Characterization of and genetic variation for tomato seed thermo-inhibition and thermo-dormancy |
title_short | Characterization of and genetic variation for tomato seed thermo-inhibition and thermo-dormancy |
title_sort | characterization of and genetic variation for tomato seed thermo-inhibition and thermo-dormancy |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6182833/ https://www.ncbi.nlm.nih.gov/pubmed/30309320 http://dx.doi.org/10.1186/s12870-018-1455-6 |
work_keys_str_mv | AT geshnizjaninafiseh characterizationofandgeneticvariationfortomatoseedthermoinhibitionandthermodormancy AT ghaderifarfarshid characterizationofandgeneticvariationfortomatoseedthermoinhibitionandthermodormancy AT willemsleoaj characterizationofandgeneticvariationfortomatoseedthermoinhibitionandthermodormancy AT hilhorsthenkwm characterizationofandgeneticvariationfortomatoseedthermoinhibitionandthermodormancy AT ligterinkwilco characterizationofandgeneticvariationfortomatoseedthermoinhibitionandthermodormancy |