Cargando…

Machine-learning based identification of undiagnosed dementia in primary care: a feasibility study

BACKGROUND: Up to half of patients with dementia may not receive a formal diagnosis, limiting access to appropriate services. It is hypothesised that it may be possible to identify undiagnosed dementia from a profile of symptoms recorded in routine clinical practice. AIM: The aim of this study is to...

Descripción completa

Detalles Bibliográficos
Autores principales: Jammeh, Emmanuel A, Carroll, Camille, B, Pearson, Stephen, W, Escudero, Javier, Anastasiou, Athanasios, Zhao, Peng, Chenore, Todd, Zajicek, John, Ifeachor, Emmanuel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Royal College of General Practitioners 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6184101/
https://www.ncbi.nlm.nih.gov/pubmed/30564722
http://dx.doi.org/10.3399/bjgpopen18X101589
_version_ 1783362725779341312
author Jammeh, Emmanuel A
Carroll, Camille, B
Pearson, Stephen, W
Escudero, Javier
Anastasiou, Athanasios
Zhao, Peng
Chenore, Todd
Zajicek, John
Ifeachor, Emmanuel
author_facet Jammeh, Emmanuel A
Carroll, Camille, B
Pearson, Stephen, W
Escudero, Javier
Anastasiou, Athanasios
Zhao, Peng
Chenore, Todd
Zajicek, John
Ifeachor, Emmanuel
author_sort Jammeh, Emmanuel A
collection PubMed
description BACKGROUND: Up to half of patients with dementia may not receive a formal diagnosis, limiting access to appropriate services. It is hypothesised that it may be possible to identify undiagnosed dementia from a profile of symptoms recorded in routine clinical practice. AIM: The aim of this study is to develop a machine learning-based model that could be used in general practice to detect dementia from routinely collected NHS data. The model would be a useful tool for identifying people who may be living with dementia but have not been formally diagnosed. DESIGN & SETTING: The study involved a case-control design and analysis of primary care data routinely collected over a 2-year period. Dementia diagnosed during the study period was compared to no diagnosis of dementia during the same period using pseudonymised routinely collected primary care clinical data. METHOD: Routinely collected Read-encoded data were obtained from 18 consenting GP surgeries across Devon, for 26 483 patients aged >65 years. The authors determined Read codes assigned to patients that may contribute to dementia risk. These codes were used as features to train a machine-learning classification model to identify patients that may have underlying dementia. RESULTS: The model obtained sensitivity and specificity values of 84.47% and 86.67%, respectively. CONCLUSION: The results show that routinely collected primary care data may be used to identify undiagnosed dementia. The methodology is promising and, if successfully developed and deployed, may help to increase dementia diagnosis in primary care.
format Online
Article
Text
id pubmed-6184101
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Royal College of General Practitioners
record_format MEDLINE/PubMed
spelling pubmed-61841012018-12-18 Machine-learning based identification of undiagnosed dementia in primary care: a feasibility study Jammeh, Emmanuel A Carroll, Camille, B Pearson, Stephen, W Escudero, Javier Anastasiou, Athanasios Zhao, Peng Chenore, Todd Zajicek, John Ifeachor, Emmanuel BJGP Open Research BACKGROUND: Up to half of patients with dementia may not receive a formal diagnosis, limiting access to appropriate services. It is hypothesised that it may be possible to identify undiagnosed dementia from a profile of symptoms recorded in routine clinical practice. AIM: The aim of this study is to develop a machine learning-based model that could be used in general practice to detect dementia from routinely collected NHS data. The model would be a useful tool for identifying people who may be living with dementia but have not been formally diagnosed. DESIGN & SETTING: The study involved a case-control design and analysis of primary care data routinely collected over a 2-year period. Dementia diagnosed during the study period was compared to no diagnosis of dementia during the same period using pseudonymised routinely collected primary care clinical data. METHOD: Routinely collected Read-encoded data were obtained from 18 consenting GP surgeries across Devon, for 26 483 patients aged >65 years. The authors determined Read codes assigned to patients that may contribute to dementia risk. These codes were used as features to train a machine-learning classification model to identify patients that may have underlying dementia. RESULTS: The model obtained sensitivity and specificity values of 84.47% and 86.67%, respectively. CONCLUSION: The results show that routinely collected primary care data may be used to identify undiagnosed dementia. The methodology is promising and, if successfully developed and deployed, may help to increase dementia diagnosis in primary care. Royal College of General Practitioners 2018-06-13 /pmc/articles/PMC6184101/ /pubmed/30564722 http://dx.doi.org/10.3399/bjgpopen18X101589 Text en Copyright © The Authors https://creativecommons.org/licenses/by/4.0/ This article is Open Access: CC BY license (https://creativecommons.org/licenses/by/4.0/)
spellingShingle Research
Jammeh, Emmanuel A
Carroll, Camille, B
Pearson, Stephen, W
Escudero, Javier
Anastasiou, Athanasios
Zhao, Peng
Chenore, Todd
Zajicek, John
Ifeachor, Emmanuel
Machine-learning based identification of undiagnosed dementia in primary care: a feasibility study
title Machine-learning based identification of undiagnosed dementia in primary care: a feasibility study
title_full Machine-learning based identification of undiagnosed dementia in primary care: a feasibility study
title_fullStr Machine-learning based identification of undiagnosed dementia in primary care: a feasibility study
title_full_unstemmed Machine-learning based identification of undiagnosed dementia in primary care: a feasibility study
title_short Machine-learning based identification of undiagnosed dementia in primary care: a feasibility study
title_sort machine-learning based identification of undiagnosed dementia in primary care: a feasibility study
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6184101/
https://www.ncbi.nlm.nih.gov/pubmed/30564722
http://dx.doi.org/10.3399/bjgpopen18X101589
work_keys_str_mv AT jammehemmanuela machinelearningbasedidentificationofundiagnoseddementiainprimarycareafeasibilitystudy
AT carrollcamilleb machinelearningbasedidentificationofundiagnoseddementiainprimarycareafeasibilitystudy
AT pearsonstephenw machinelearningbasedidentificationofundiagnoseddementiainprimarycareafeasibilitystudy
AT escuderojavier machinelearningbasedidentificationofundiagnoseddementiainprimarycareafeasibilitystudy
AT anastasiouathanasios machinelearningbasedidentificationofundiagnoseddementiainprimarycareafeasibilitystudy
AT zhaopeng machinelearningbasedidentificationofundiagnoseddementiainprimarycareafeasibilitystudy
AT chenoretodd machinelearningbasedidentificationofundiagnoseddementiainprimarycareafeasibilitystudy
AT zajicekjohn machinelearningbasedidentificationofundiagnoseddementiainprimarycareafeasibilitystudy
AT ifeachoremmanuel machinelearningbasedidentificationofundiagnoseddementiainprimarycareafeasibilitystudy