Cargando…
Predictive performance of regression models to estimate Chlorophyll-a concentration based on Landsat imagery
Chlorophyll-a (Chl-a) concentration is a key parameter to describe water quality in marine and freshwater environments. Nowadays, several products with Chl-a have derived from satellite imagery, but they are not available or reliable sometimes for coastal and/or small water bodies. Thus, in the last...
Autores principales: | Matus-Hernández, Miguel Ángel, Hernández-Saavedra, Norma Yolanda, Martínez-Rincón, Raúl Octavio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6185857/ https://www.ncbi.nlm.nih.gov/pubmed/30312339 http://dx.doi.org/10.1371/journal.pone.0205682 |
Ejemplares similares
-
Estimating Grassland Carbon Stocks in Hulunber China, Using Landsat8 Oli Imagery and Regression Kriging †
por: Ding, Lei, et al.
Publicado: (2019) -
Generating Daily Synthetic Landsat Imagery by Combining Landsat and MODIS Data
por: Wu, Mingquan, et al.
Publicado: (2015) -
Estimation of Chlorophyll-a Concentration and the Trophic State of the Barra Bonita Hydroelectric Reservoir Using OLI/Landsat-8 Images
por: Watanabe, Fernanda Sayuri Yoshino, et al.
Publicado: (2015) -
Effect of Different Species of Prorocentrum Genus on the Japanese Oyster Crassostrea gigas Proteomic Profile
por: Matus Hernández, Miguel Angel, et al.
Publicado: (2021) -
Mapping the Philippines’ Mangrove Forests Using Landsat Imagery
por: Long, Jordan B., et al.
Publicado: (2011)