Cargando…

Photonic thermal management of coloured objects

The colours of outdoor structures, such as automobiles, buildings and clothing, are typically chosen for functional or aesthetic reasons. With a chosen colour, however, one must control the radiative thermal load for heating or cooling purposes. Here we provide a comprehensive calculation of the tun...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Wei, Shi, Yu, Chen, Zhen, Fan, Shanhui
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6185958/
https://www.ncbi.nlm.nih.gov/pubmed/30315155
http://dx.doi.org/10.1038/s41467-018-06535-0
Descripción
Sumario:The colours of outdoor structures, such as automobiles, buildings and clothing, are typically chosen for functional or aesthetic reasons. With a chosen colour, however, one must control the radiative thermal load for heating or cooling purposes. Here we provide a comprehensive calculation of the tunable range of radiative thermal load for all colours. The range exceeds 680 Wm(−2) for all colours, and can be as high as 866 Wm(−2), resulting from effects of metamerism, infrared solar absorption and radiative cooling. We experimentally demonstrate that two photonic structures with the same pink colour can have their temperatures differ by 47.6 °C under sunlight. These structures are over 20 °C either cooler or hotter than a commercial paint with a comparable colour. Furthermore, the hotter pink structure is 10 °C hotter than a commercial black paint. These results elucidate the fundamental potentials of photonic thermal management for coloured objects.