Cargando…
Finding the mean in a partition distribution
BACKGROUND: Bayesian clustering algorithms, in particular those utilizing Dirichlet Processes (DP), return a sample of the posterior distribution of partitions of a set. However, in many applied cases a single clustering solution is desired, requiring a ’best’ partition to be created from the poster...
Autores principales: | Glassen, Thomas J., Oertzen, Timo von, Konovalov, Dmitry A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6186144/ https://www.ncbi.nlm.nih.gov/pubmed/30314432 http://dx.doi.org/10.1186/s12859-018-2359-z |
Ejemplares similares
-
Finding reproducible cluster partitions for the k-means algorithm
por: Lisboa, Paulo JG, et al.
Publicado: (2013) -
Using the Dirichlet process to form clusters of people’s concerns in the context of future party identification
por: Meyer, Patrick, et al.
Publicado: (2019) -
Correction: Using the Dirichlet process to form clusters of people's concerns in the context of future party identification
por: Meyer, Patrick, et al.
Publicado: (2019) -
On Finding and Enumerating Maximal and Maximum k-Partite Cliques in k-Partite Graphs
por: Phillips, Charles A., et al.
Publicado: (2019) -
Multivalued neutrosophic power partitioned Hamy mean operators and their application in MAGDM
por: Wang, Muwen, et al.
Publicado: (2023)