Cargando…

Regional differences in an established population of invasive Indo-Pacific lionfish (Pterois volitans and P. miles) in south Florida

About nine years ago (circa 2009), Indo-Pacific lionfishes (Pterois volitans and P. miles) invaded the south Florida coral reef ecosystem. During the intervening period of time, there has been substantial research on their biology, life history, demography, and habitat preferences; however, little i...

Descripción completa

Detalles Bibliográficos
Autores principales: Bryan, David R., Blondeau, Jeremiah, Siana, Ashley, Ault, Jerald S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: PeerJ Inc. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6186158/
https://www.ncbi.nlm.nih.gov/pubmed/30324014
http://dx.doi.org/10.7717/peerj.5700
Descripción
Sumario:About nine years ago (circa 2009), Indo-Pacific lionfishes (Pterois volitans and P. miles) invaded the south Florida coral reef ecosystem. During the intervening period of time, there has been substantial research on their biology, life history, demography, and habitat preferences; however, little is known concerning their regional population status and trends in the region. Here, we use a large-scale fisheries independent reef fish visual survey to investigate lionfish population status among three south Florida regions: Dry Tortugas, Florida Keys, and southeast Florida. Density estimates (ind ha(−1)) have been relatively stable since 2012, and are lower than other areas reported in the western Atlantic and Caribbean Sea. Low, stable population densities in south Florida suggest there may be a natural mechanism for lionfish population control. In the Dry Tortugas, lionfish density in 2016 was significantly lower (0.6 ind ha(−1) ± 0.15 SE) than the two other south Florida regions. The Dry Tortugas region has the highest percentage of marine protected areas, the lowest level of exploitation, and thus the highest densities of potential lionfish predators and competitors. In the Florida Keys and southeast Florida in 2016, lionfish densities were greater (5.4 ind ha(−1) ± 1.0 SE and 9.0 ± 2.7 SE, respectively) than the Dry Tortugas. Fishing pressure on lionfish was higher in these two regions, but densities of several potential predators and competitors were substantially lower. Despite relatively low regional lionfish densities that can be attributed to some combination of fishing mortality and natural biocontrol, lionfish are still well established in the south Florida coral reef ecosystem, warranting continued concern.