Cargando…

Perspective: Spectrin-Like Repeats in Dystrophin Have Unique Binding Preferences for Syntrophin Adaptors That Explain the Mystery of How nNOSμ Localizes to the Sarcolemma

Dystrophin is a massive multi-domain protein composed of specialized amino and carboxyl termini that are separated by 24 spectrin-like repeats. Dystrophin performs critical structural and signaling roles that are indispensable for the functional integrity of skeletal muscle. Indeed, the loss of dyst...

Descripción completa

Detalles Bibliográficos
Autor principal: Percival, Justin M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6186803/
https://www.ncbi.nlm.nih.gov/pubmed/30349485
http://dx.doi.org/10.3389/fphys.2018.01369
_version_ 1783362908204302336
author Percival, Justin M.
author_facet Percival, Justin M.
author_sort Percival, Justin M.
collection PubMed
description Dystrophin is a massive multi-domain protein composed of specialized amino and carboxyl termini that are separated by 24 spectrin-like repeats. Dystrophin performs critical structural and signaling roles that are indispensable for the functional integrity of skeletal muscle. Indeed, the loss of dystrophin protein expression causes the muscle wasting disease, Duchenne muscular dystrophy (DMD). Substantial progress has been made in defining the functions of the domains of dystrophin, which has proven invaluable for the development of miniaturized dystrophin gene and exon skipping therapies for DMD. However, a long-standing mystery regarding dystrophin function is how dystrophin, and its adaptor and neuronal nitric oxide synthase mu (nNOSμ) binding partner α-syntrophin, cooperate to localize nNOSμ to the sarcolemma. Only when localized to the sarcolemma can nNOSμ override sympathetic vasoconstriction and prevent functional ischemia in contracting muscles. Current evidence suggests that spectrin-like repeat 17 of dystrophin and α-syntrophin cooperate to localize nNOSμ to the sarcolemma. However, the exact mechanism remains unclear and controversial because of equivocal evidence for direct binding of dystrophin and nNOSμ. Recently, an important study identified a novel α-syntrophin binding site within spectrin-like repeat 17, leading to a new model whereby α-syntrophin recruits nNOSμ to the sarcolemmal dystrophin complex by binding spectrin-like repeat 17. This model finally appears to solve the mystery of the dual requirement for dystrophin and α-syntrophin for sarcolemmal nNOSμ localization. The aim of the current perspective is to highlight this major advance in understanding of dystrophin’s role in localizing nNOSμ and its implications for current trials.
format Online
Article
Text
id pubmed-6186803
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-61868032018-10-22 Perspective: Spectrin-Like Repeats in Dystrophin Have Unique Binding Preferences for Syntrophin Adaptors That Explain the Mystery of How nNOSμ Localizes to the Sarcolemma Percival, Justin M. Front Physiol Physiology Dystrophin is a massive multi-domain protein composed of specialized amino and carboxyl termini that are separated by 24 spectrin-like repeats. Dystrophin performs critical structural and signaling roles that are indispensable for the functional integrity of skeletal muscle. Indeed, the loss of dystrophin protein expression causes the muscle wasting disease, Duchenne muscular dystrophy (DMD). Substantial progress has been made in defining the functions of the domains of dystrophin, which has proven invaluable for the development of miniaturized dystrophin gene and exon skipping therapies for DMD. However, a long-standing mystery regarding dystrophin function is how dystrophin, and its adaptor and neuronal nitric oxide synthase mu (nNOSμ) binding partner α-syntrophin, cooperate to localize nNOSμ to the sarcolemma. Only when localized to the sarcolemma can nNOSμ override sympathetic vasoconstriction and prevent functional ischemia in contracting muscles. Current evidence suggests that spectrin-like repeat 17 of dystrophin and α-syntrophin cooperate to localize nNOSμ to the sarcolemma. However, the exact mechanism remains unclear and controversial because of equivocal evidence for direct binding of dystrophin and nNOSμ. Recently, an important study identified a novel α-syntrophin binding site within spectrin-like repeat 17, leading to a new model whereby α-syntrophin recruits nNOSμ to the sarcolemmal dystrophin complex by binding spectrin-like repeat 17. This model finally appears to solve the mystery of the dual requirement for dystrophin and α-syntrophin for sarcolemmal nNOSμ localization. The aim of the current perspective is to highlight this major advance in understanding of dystrophin’s role in localizing nNOSμ and its implications for current trials. Frontiers Media S.A. 2018-10-08 /pmc/articles/PMC6186803/ /pubmed/30349485 http://dx.doi.org/10.3389/fphys.2018.01369 Text en Copyright © 2018 Percival. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Physiology
Percival, Justin M.
Perspective: Spectrin-Like Repeats in Dystrophin Have Unique Binding Preferences for Syntrophin Adaptors That Explain the Mystery of How nNOSμ Localizes to the Sarcolemma
title Perspective: Spectrin-Like Repeats in Dystrophin Have Unique Binding Preferences for Syntrophin Adaptors That Explain the Mystery of How nNOSμ Localizes to the Sarcolemma
title_full Perspective: Spectrin-Like Repeats in Dystrophin Have Unique Binding Preferences for Syntrophin Adaptors That Explain the Mystery of How nNOSμ Localizes to the Sarcolemma
title_fullStr Perspective: Spectrin-Like Repeats in Dystrophin Have Unique Binding Preferences for Syntrophin Adaptors That Explain the Mystery of How nNOSμ Localizes to the Sarcolemma
title_full_unstemmed Perspective: Spectrin-Like Repeats in Dystrophin Have Unique Binding Preferences for Syntrophin Adaptors That Explain the Mystery of How nNOSμ Localizes to the Sarcolemma
title_short Perspective: Spectrin-Like Repeats in Dystrophin Have Unique Binding Preferences for Syntrophin Adaptors That Explain the Mystery of How nNOSμ Localizes to the Sarcolemma
title_sort perspective: spectrin-like repeats in dystrophin have unique binding preferences for syntrophin adaptors that explain the mystery of how nnosμ localizes to the sarcolemma
topic Physiology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6186803/
https://www.ncbi.nlm.nih.gov/pubmed/30349485
http://dx.doi.org/10.3389/fphys.2018.01369
work_keys_str_mv AT percivaljustinm perspectivespectrinlikerepeatsindystrophinhaveuniquebindingpreferencesforsyntrophinadaptorsthatexplainthemysteryofhownnosmlocalizestothesarcolemma