Cargando…

Advances of Optofluidic Microcavities for Microlasers and Biosensors

Optofluidic microcavities with high Q factor have made rapid progress in recent years by using various micro-structures. On one hand, they are applied to microfluidic lasers with low excitation thresholds. On the other hand, they inspire the innovation of new biosensing devices with excellent perfor...

Descripción completa

Detalles Bibliográficos
Autores principales: Feng, Zhiqing, Bai, Lan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6187242/
https://www.ncbi.nlm.nih.gov/pubmed/30424056
http://dx.doi.org/10.3390/mi9030122
Descripción
Sumario:Optofluidic microcavities with high Q factor have made rapid progress in recent years by using various micro-structures. On one hand, they are applied to microfluidic lasers with low excitation thresholds. On the other hand, they inspire the innovation of new biosensing devices with excellent performance. In this article, the recent advances in the microlaser research and the biochemical sensing field will be reviewed. The former will be categorized based on the structures of optical resonant cavities such as the Fabry–Pérot cavity and whispering gallery mode, and the latter will be classified based on the working principles into active sensors and passive sensors. Moreover, the difficulty of single-chip integration and recent endeavors will be briefly discussed.