Cargando…

Flexible Tactile Sensor Array Based on Aligned MWNTs-PU Composited Sub-Microfibers

This present paper describes a novel method to fabricate tactile sensor arrays by producing aligned multi-walled carbon nanotubes (MWNTs)-polyurethane (PU) composite sub-microfiber (SMF) arrays with the electrospinning technique. The proposed sensor was designed to be used as the artificial skin for...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Weiting, Cheng, Xiaoying, Ruan, Xiaodong, Fu, Xin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6187243/
https://www.ncbi.nlm.nih.gov/pubmed/30424134
http://dx.doi.org/10.3390/mi9050201
Descripción
Sumario:This present paper describes a novel method to fabricate tactile sensor arrays by producing aligned multi-walled carbon nanotubes (MWNTs)-polyurethane (PU) composite sub-microfiber (SMF) arrays with the electrospinning technique. The proposed sensor was designed to be used as the artificial skin for a tactile sensation system. Although thin fibers in micro- and nanoscale have many good mechanical characteristics and could enhance the alignment of MWNTs inside, the high impedance as a consequence of a small section handicaps its application. In this paper, unidirectional composite SMFs were fabricated orthogonally to the parallel electrodes through a low-cost method to serve as sensitive elements (SEs), and the impedances of SEs were measured to investigate the changes with deformation caused by applied force. The particular piezoresistive mechanism of MWNTs disturbed in SMF was analyzed. The static and dynamic test results of the fabricated tactile sensor were also presented to validate the performance of the proposed design.