Cargando…
Three-Dimensional Reservoir-Based Dielectrophoresis (rDEP) for Enhanced Particle Enrichment
Selective enrichment of target species is crucial for a wide variety of engineering systems for improved performance of subsequent processes. Dielectrophoresis (DEP) is a powerful electrokinetic method that can be used to focus, trap, concentrate, and separate a variety of species in a label-free ma...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6187384/ https://www.ncbi.nlm.nih.gov/pubmed/30424057 http://dx.doi.org/10.3390/mi9030123 |
Sumario: | Selective enrichment of target species is crucial for a wide variety of engineering systems for improved performance of subsequent processes. Dielectrophoresis (DEP) is a powerful electrokinetic method that can be used to focus, trap, concentrate, and separate a variety of species in a label-free manner. The commonly employed methods for DEP suffer from limitations such as electrode fouling and high susceptibility to Joule heating effects. Recently, our group has demonstrated DEP-based manipulations of particles and cells using a novel method of reservoir-based dielectrophoresis (rDEP) which exploits the naturally produced electric field gradients at the reservoir-microchannel junction. Although this method reasonably addresses the limitations mentioned above while maintaining a high simplicity of fabrication, all of our demonstrations so far have used a two-dimensional rDEP, which limits the performance of the devices. This work aims to improve their performance further by making the DEP three-dimensional. Through detailed experimental and numerical analysis, we demonstrate a six-fold increase in the enrichment performance of latex beads and a significant reduction in the power consumption for the new devices, which would allow a more reliable integration of the same into micro-total analysis systems. |
---|