Cargando…
Design of Ensemble Stacked Auto-Encoder for Classification of Horse Gaits with MEMS Inertial Sensor Technology
This paper discusses the classification of horse gaits for self-coaching using an ensemble stacked auto-encoder (ESAE) based on wavelet packets from the motion data of the horse rider. For this purpose, we built an ESAE and used probability values at the end of the softmax classifier. First, we init...
Autores principales: | Lee, Jae-Neung, Byeon, Yeong-Hyeon, Kwak, Keun-Chang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6187387/ https://www.ncbi.nlm.nih.gov/pubmed/30424344 http://dx.doi.org/10.3390/mi9080411 |
Ejemplares similares
-
Classification of Horse Gaits Using FCM-Based Neuro-Fuzzy Classifier from the Transformed Data Information of Inertial Sensor
por: Lee, Jae-Neung, et al.
Publicado: (2016) -
MEMS Inertial Sensors Based Gait Analysis for Rehabilitation Assessment via Multi-Sensor Fusion
por: Qiu, Sen, et al.
Publicado: (2018) -
Stacked Sparse Auto-Encoders (SSAE) Based Electronic Nose for Chinese Liquors Classification
por: Zhao, Wei, et al.
Publicado: (2017) -
Detecting fatigue of sport horses with biomechanical gait features using inertial sensors
por: Darbandi, Hamed, et al.
Publicado: (2023) -
Improving gait classification in horses by using inertial measurement unit (IMU) generated data and machine learning
por: Serra Bragança, F. M., et al.
Publicado: (2020)