Cargando…

Optofluidic Tunable Lenses for In-Plane Light Manipulation

Optofluidics incorporates optics and microfluidics together to construct novel devices for microsystems, providing flexible reconfigurability and high compatibility. Among many novel devices, a prominent one is the in-plane optofluidic lens. It manipulates the light in the plane of the substrate, up...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Qingming, Li, Tenghao, Li, Zhaohui, Long, Jinlin, Zhang, Xuming
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6187471/
https://www.ncbi.nlm.nih.gov/pubmed/30424031
http://dx.doi.org/10.3390/mi9030097
Descripción
Sumario:Optofluidics incorporates optics and microfluidics together to construct novel devices for microsystems, providing flexible reconfigurability and high compatibility. Among many novel devices, a prominent one is the in-plane optofluidic lens. It manipulates the light in the plane of the substrate, upon which the liquid sample is held. Benefiting from the compatibility, the in-plane optofluidic lenses can be incorporated into a single chip without complicated manual alignment and promises high integration density. In term of the tunability, the in-plane liquid lenses can be either tuned by adjusting the fluidic interface using numerous microfluidic techniques, or by modulating the refractive index of the liquid using temperature, electric field and concentration. In this paper, the in-plane liquid lenses will be reviewed in the aspects of operation mechanisms and recent development. In addition, their applications in lab-on-a-chip systems are also discussed.