Cargando…

Silicon-Vacancy Centers in Ultra-Thin Nanocrystalline Diamond Films

Color centers in diamond have shown excellent potential for applications in quantum information processing, photonics, and biology. Here we report the optoelectronic investigation of shallow silicon vacancy (SiV) color centers in ultra-thin (7–40 nm) nanocrystalline diamond (NCD) films with variable...

Descripción completa

Detalles Bibliográficos
Autores principales: Stehlik, Stepan, Ondic, Lukas, Varga, Marian, Fait, Jan, Artemenko, Anna, Glatzel, Thilo, Kromka, Alexander, Rezek, Bohuslav
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6187497/
https://www.ncbi.nlm.nih.gov/pubmed/30424214
http://dx.doi.org/10.3390/mi9060281
_version_ 1783363033367576576
author Stehlik, Stepan
Ondic, Lukas
Varga, Marian
Fait, Jan
Artemenko, Anna
Glatzel, Thilo
Kromka, Alexander
Rezek, Bohuslav
author_facet Stehlik, Stepan
Ondic, Lukas
Varga, Marian
Fait, Jan
Artemenko, Anna
Glatzel, Thilo
Kromka, Alexander
Rezek, Bohuslav
author_sort Stehlik, Stepan
collection PubMed
description Color centers in diamond have shown excellent potential for applications in quantum information processing, photonics, and biology. Here we report the optoelectronic investigation of shallow silicon vacancy (SiV) color centers in ultra-thin (7–40 nm) nanocrystalline diamond (NCD) films with variable surface chemistry. We show that hydrogenated ultra-thin NCD films exhibit no or lowered SiV photoluminescence (PL) and relatively high negative surface photovoltage (SPV) which is ascribed to non-radiative electron transitions from SiV to surface-related traps. Higher SiV PL and low positive SPV of oxidized ultra-thin NCD films indicate an efficient excitation—emission PL process without significant electron escape, yet with some hole trapping in diamond surface states. Decreasing SPV magnitude and increasing SiV PL intensity with thickness, in both cases, is attributed to resonant energy transfer between shallow and bulk SiV. We also demonstrate that thermal treatments (annealing in air or in hydrogen gas), commonly applied to modify the surface chemistry of nanodiamonds, are also applicable to ultra-thin NCD films in terms of tuning their SiV PL and surface chemistry.
format Online
Article
Text
id pubmed-6187497
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-61874972018-11-01 Silicon-Vacancy Centers in Ultra-Thin Nanocrystalline Diamond Films Stehlik, Stepan Ondic, Lukas Varga, Marian Fait, Jan Artemenko, Anna Glatzel, Thilo Kromka, Alexander Rezek, Bohuslav Micromachines (Basel) Article Color centers in diamond have shown excellent potential for applications in quantum information processing, photonics, and biology. Here we report the optoelectronic investigation of shallow silicon vacancy (SiV) color centers in ultra-thin (7–40 nm) nanocrystalline diamond (NCD) films with variable surface chemistry. We show that hydrogenated ultra-thin NCD films exhibit no or lowered SiV photoluminescence (PL) and relatively high negative surface photovoltage (SPV) which is ascribed to non-radiative electron transitions from SiV to surface-related traps. Higher SiV PL and low positive SPV of oxidized ultra-thin NCD films indicate an efficient excitation—emission PL process without significant electron escape, yet with some hole trapping in diamond surface states. Decreasing SPV magnitude and increasing SiV PL intensity with thickness, in both cases, is attributed to resonant energy transfer between shallow and bulk SiV. We also demonstrate that thermal treatments (annealing in air or in hydrogen gas), commonly applied to modify the surface chemistry of nanodiamonds, are also applicable to ultra-thin NCD films in terms of tuning their SiV PL and surface chemistry. MDPI 2018-06-02 /pmc/articles/PMC6187497/ /pubmed/30424214 http://dx.doi.org/10.3390/mi9060281 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Stehlik, Stepan
Ondic, Lukas
Varga, Marian
Fait, Jan
Artemenko, Anna
Glatzel, Thilo
Kromka, Alexander
Rezek, Bohuslav
Silicon-Vacancy Centers in Ultra-Thin Nanocrystalline Diamond Films
title Silicon-Vacancy Centers in Ultra-Thin Nanocrystalline Diamond Films
title_full Silicon-Vacancy Centers in Ultra-Thin Nanocrystalline Diamond Films
title_fullStr Silicon-Vacancy Centers in Ultra-Thin Nanocrystalline Diamond Films
title_full_unstemmed Silicon-Vacancy Centers in Ultra-Thin Nanocrystalline Diamond Films
title_short Silicon-Vacancy Centers in Ultra-Thin Nanocrystalline Diamond Films
title_sort silicon-vacancy centers in ultra-thin nanocrystalline diamond films
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6187497/
https://www.ncbi.nlm.nih.gov/pubmed/30424214
http://dx.doi.org/10.3390/mi9060281
work_keys_str_mv AT stehlikstepan siliconvacancycentersinultrathinnanocrystallinediamondfilms
AT ondiclukas siliconvacancycentersinultrathinnanocrystallinediamondfilms
AT vargamarian siliconvacancycentersinultrathinnanocrystallinediamondfilms
AT faitjan siliconvacancycentersinultrathinnanocrystallinediamondfilms
AT artemenkoanna siliconvacancycentersinultrathinnanocrystallinediamondfilms
AT glatzelthilo siliconvacancycentersinultrathinnanocrystallinediamondfilms
AT kromkaalexander siliconvacancycentersinultrathinnanocrystallinediamondfilms
AT rezekbohuslav siliconvacancycentersinultrathinnanocrystallinediamondfilms