Cargando…

Optimization of Micropump Performance Utilizing a Single Membrane with an Active Check Valve

In this study, we successfully designed and tested a new micropump that utilizes an active check valve and bottom-protruding structure to achieve sample transportation. We performed theoretical analyses and numerical simulations to determine the optimal location of the active check valve. We also ex...

Descripción completa

Detalles Bibliográficos
Autores principales: Bui, Gia Thinh, Wang, Jung-Hao, Lin, Jr-Lung
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6187502/
https://www.ncbi.nlm.nih.gov/pubmed/30393278
http://dx.doi.org/10.3390/mi9010001
Descripción
Sumario:In this study, we successfully designed and tested a new micropump that utilizes an active check valve and bottom-protruding structure to achieve sample transportation. We performed theoretical analyses and numerical simulations to determine the optimal location of the active check valve. We also experimentally analyzed variations in the generated flow rate with respect to the pneumatic frequencies, actuated air pressures, and locations of the active check valve. The experimental results indicate the optimum air pressure, driving frequency, and location of the active check valve to be 68.9 kPa, 26.0 Hz, and 2.0 mm, respectively. We obtained a maximum pumping rate of 488 μL/min and a maximum pumping efficiency of 35.4%. The proposed micropump could perform a crucial function in the transportation of microfluids and could be incorporated into micro total analysis systems.