Cargando…

Spin–Orbit Interaction and Induced Superconductivity in a One-Dimensional Hole Gas

[Image: see text] Low dimensional semiconducting structures with strong spin–orbit interaction (SOI) and induced superconductivity attracted great interest in the search for topological superconductors. Both the strong SOI and hard superconducting gap are directly related to the topological protecti...

Descripción completa

Detalles Bibliográficos
Autores principales: de Vries, Folkert K., Shen, Jie, Skolasinski, Rafal J., Nowak, Michal P., Varjas, Daniel, Wang, Lin, Wimmer, Michael, Ridderbos, Joost, Zwanenburg, Floris A., Li, Ang, Koelling, Sebastian, Verheijen, Marcel A., Bakkers, Erik P. A. M., Kouwenhoven, Leo P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2018
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6187512/
https://www.ncbi.nlm.nih.gov/pubmed/30192147
http://dx.doi.org/10.1021/acs.nanolett.8b02981
_version_ 1783363036899180544
author de Vries, Folkert K.
Shen, Jie
Skolasinski, Rafal J.
Nowak, Michal P.
Varjas, Daniel
Wang, Lin
Wimmer, Michael
Ridderbos, Joost
Zwanenburg, Floris A.
Li, Ang
Koelling, Sebastian
Verheijen, Marcel A.
Bakkers, Erik P. A. M.
Kouwenhoven, Leo P.
author_facet de Vries, Folkert K.
Shen, Jie
Skolasinski, Rafal J.
Nowak, Michal P.
Varjas, Daniel
Wang, Lin
Wimmer, Michael
Ridderbos, Joost
Zwanenburg, Floris A.
Li, Ang
Koelling, Sebastian
Verheijen, Marcel A.
Bakkers, Erik P. A. M.
Kouwenhoven, Leo P.
author_sort de Vries, Folkert K.
collection PubMed
description [Image: see text] Low dimensional semiconducting structures with strong spin–orbit interaction (SOI) and induced superconductivity attracted great interest in the search for topological superconductors. Both the strong SOI and hard superconducting gap are directly related to the topological protection of the predicted Majorana bound states. Here we explore the one-dimensional hole gas in germanium silicon (Ge–Si) core–shell nanowires (NWs) as a new material candidate for creating a topological superconductor. Fitting multiple Andreev reflection measurements shows that the NW has two transport channels only, underlining its one-dimensionality. Furthermore, we find anisotropy of the Landé g-factor that, combined with band structure calculations, provides us qualitative evidence for the direct Rashba SOI and a strong orbital effect of the magnetic field. Finally, a hard superconducting gap is found in the tunneling regime and the open regime, where we use the Kondo peak as a new tool to gauge the quality of the superconducting gap.
format Online
Article
Text
id pubmed-6187512
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-61875122018-10-17 Spin–Orbit Interaction and Induced Superconductivity in a One-Dimensional Hole Gas de Vries, Folkert K. Shen, Jie Skolasinski, Rafal J. Nowak, Michal P. Varjas, Daniel Wang, Lin Wimmer, Michael Ridderbos, Joost Zwanenburg, Floris A. Li, Ang Koelling, Sebastian Verheijen, Marcel A. Bakkers, Erik P. A. M. Kouwenhoven, Leo P. Nano Lett [Image: see text] Low dimensional semiconducting structures with strong spin–orbit interaction (SOI) and induced superconductivity attracted great interest in the search for topological superconductors. Both the strong SOI and hard superconducting gap are directly related to the topological protection of the predicted Majorana bound states. Here we explore the one-dimensional hole gas in germanium silicon (Ge–Si) core–shell nanowires (NWs) as a new material candidate for creating a topological superconductor. Fitting multiple Andreev reflection measurements shows that the NW has two transport channels only, underlining its one-dimensionality. Furthermore, we find anisotropy of the Landé g-factor that, combined with band structure calculations, provides us qualitative evidence for the direct Rashba SOI and a strong orbital effect of the magnetic field. Finally, a hard superconducting gap is found in the tunneling regime and the open regime, where we use the Kondo peak as a new tool to gauge the quality of the superconducting gap. American Chemical Society 2018-09-07 2018-10-10 /pmc/articles/PMC6187512/ /pubmed/30192147 http://dx.doi.org/10.1021/acs.nanolett.8b02981 Text en Copyright © 2018 American Chemical Society This is an open access article published under a Creative Commons Non-Commercial No Derivative Works (CC-BY-NC-ND) Attribution License (http://pubs.acs.org/page/policy/authorchoice_ccbyncnd_termsofuse.html) , which permits copying and redistribution of the article, and creation of adaptations, all for non-commercial purposes.
spellingShingle de Vries, Folkert K.
Shen, Jie
Skolasinski, Rafal J.
Nowak, Michal P.
Varjas, Daniel
Wang, Lin
Wimmer, Michael
Ridderbos, Joost
Zwanenburg, Floris A.
Li, Ang
Koelling, Sebastian
Verheijen, Marcel A.
Bakkers, Erik P. A. M.
Kouwenhoven, Leo P.
Spin–Orbit Interaction and Induced Superconductivity in a One-Dimensional Hole Gas
title Spin–Orbit Interaction and Induced Superconductivity in a One-Dimensional Hole Gas
title_full Spin–Orbit Interaction and Induced Superconductivity in a One-Dimensional Hole Gas
title_fullStr Spin–Orbit Interaction and Induced Superconductivity in a One-Dimensional Hole Gas
title_full_unstemmed Spin–Orbit Interaction and Induced Superconductivity in a One-Dimensional Hole Gas
title_short Spin–Orbit Interaction and Induced Superconductivity in a One-Dimensional Hole Gas
title_sort spin–orbit interaction and induced superconductivity in a one-dimensional hole gas
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6187512/
https://www.ncbi.nlm.nih.gov/pubmed/30192147
http://dx.doi.org/10.1021/acs.nanolett.8b02981
work_keys_str_mv AT devriesfolkertk spinorbitinteractionandinducedsuperconductivityinaonedimensionalholegas
AT shenjie spinorbitinteractionandinducedsuperconductivityinaonedimensionalholegas
AT skolasinskirafalj spinorbitinteractionandinducedsuperconductivityinaonedimensionalholegas
AT nowakmichalp spinorbitinteractionandinducedsuperconductivityinaonedimensionalholegas
AT varjasdaniel spinorbitinteractionandinducedsuperconductivityinaonedimensionalholegas
AT wanglin spinorbitinteractionandinducedsuperconductivityinaonedimensionalholegas
AT wimmermichael spinorbitinteractionandinducedsuperconductivityinaonedimensionalholegas
AT ridderbosjoost spinorbitinteractionandinducedsuperconductivityinaonedimensionalholegas
AT zwanenburgflorisa spinorbitinteractionandinducedsuperconductivityinaonedimensionalholegas
AT liang spinorbitinteractionandinducedsuperconductivityinaonedimensionalholegas
AT koellingsebastian spinorbitinteractionandinducedsuperconductivityinaonedimensionalholegas
AT verheijenmarcela spinorbitinteractionandinducedsuperconductivityinaonedimensionalholegas
AT bakkerserikpam spinorbitinteractionandinducedsuperconductivityinaonedimensionalholegas
AT kouwenhovenleop spinorbitinteractionandinducedsuperconductivityinaonedimensionalholegas