Cargando…
Spin–Orbit Interaction and Induced Superconductivity in a One-Dimensional Hole Gas
[Image: see text] Low dimensional semiconducting structures with strong spin–orbit interaction (SOI) and induced superconductivity attracted great interest in the search for topological superconductors. Both the strong SOI and hard superconducting gap are directly related to the topological protecti...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2018
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6187512/ https://www.ncbi.nlm.nih.gov/pubmed/30192147 http://dx.doi.org/10.1021/acs.nanolett.8b02981 |
_version_ | 1783363036899180544 |
---|---|
author | de Vries, Folkert K. Shen, Jie Skolasinski, Rafal J. Nowak, Michal P. Varjas, Daniel Wang, Lin Wimmer, Michael Ridderbos, Joost Zwanenburg, Floris A. Li, Ang Koelling, Sebastian Verheijen, Marcel A. Bakkers, Erik P. A. M. Kouwenhoven, Leo P. |
author_facet | de Vries, Folkert K. Shen, Jie Skolasinski, Rafal J. Nowak, Michal P. Varjas, Daniel Wang, Lin Wimmer, Michael Ridderbos, Joost Zwanenburg, Floris A. Li, Ang Koelling, Sebastian Verheijen, Marcel A. Bakkers, Erik P. A. M. Kouwenhoven, Leo P. |
author_sort | de Vries, Folkert K. |
collection | PubMed |
description | [Image: see text] Low dimensional semiconducting structures with strong spin–orbit interaction (SOI) and induced superconductivity attracted great interest in the search for topological superconductors. Both the strong SOI and hard superconducting gap are directly related to the topological protection of the predicted Majorana bound states. Here we explore the one-dimensional hole gas in germanium silicon (Ge–Si) core–shell nanowires (NWs) as a new material candidate for creating a topological superconductor. Fitting multiple Andreev reflection measurements shows that the NW has two transport channels only, underlining its one-dimensionality. Furthermore, we find anisotropy of the Landé g-factor that, combined with band structure calculations, provides us qualitative evidence for the direct Rashba SOI and a strong orbital effect of the magnetic field. Finally, a hard superconducting gap is found in the tunneling regime and the open regime, where we use the Kondo peak as a new tool to gauge the quality of the superconducting gap. |
format | Online Article Text |
id | pubmed-6187512 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-61875122018-10-17 Spin–Orbit Interaction and Induced Superconductivity in a One-Dimensional Hole Gas de Vries, Folkert K. Shen, Jie Skolasinski, Rafal J. Nowak, Michal P. Varjas, Daniel Wang, Lin Wimmer, Michael Ridderbos, Joost Zwanenburg, Floris A. Li, Ang Koelling, Sebastian Verheijen, Marcel A. Bakkers, Erik P. A. M. Kouwenhoven, Leo P. Nano Lett [Image: see text] Low dimensional semiconducting structures with strong spin–orbit interaction (SOI) and induced superconductivity attracted great interest in the search for topological superconductors. Both the strong SOI and hard superconducting gap are directly related to the topological protection of the predicted Majorana bound states. Here we explore the one-dimensional hole gas in germanium silicon (Ge–Si) core–shell nanowires (NWs) as a new material candidate for creating a topological superconductor. Fitting multiple Andreev reflection measurements shows that the NW has two transport channels only, underlining its one-dimensionality. Furthermore, we find anisotropy of the Landé g-factor that, combined with band structure calculations, provides us qualitative evidence for the direct Rashba SOI and a strong orbital effect of the magnetic field. Finally, a hard superconducting gap is found in the tunneling regime and the open regime, where we use the Kondo peak as a new tool to gauge the quality of the superconducting gap. American Chemical Society 2018-09-07 2018-10-10 /pmc/articles/PMC6187512/ /pubmed/30192147 http://dx.doi.org/10.1021/acs.nanolett.8b02981 Text en Copyright © 2018 American Chemical Society This is an open access article published under a Creative Commons Non-Commercial No Derivative Works (CC-BY-NC-ND) Attribution License (http://pubs.acs.org/page/policy/authorchoice_ccbyncnd_termsofuse.html) , which permits copying and redistribution of the article, and creation of adaptations, all for non-commercial purposes. |
spellingShingle | de Vries, Folkert K. Shen, Jie Skolasinski, Rafal J. Nowak, Michal P. Varjas, Daniel Wang, Lin Wimmer, Michael Ridderbos, Joost Zwanenburg, Floris A. Li, Ang Koelling, Sebastian Verheijen, Marcel A. Bakkers, Erik P. A. M. Kouwenhoven, Leo P. Spin–Orbit Interaction and Induced Superconductivity in a One-Dimensional Hole Gas |
title | Spin–Orbit Interaction and Induced Superconductivity
in a One-Dimensional Hole Gas |
title_full | Spin–Orbit Interaction and Induced Superconductivity
in a One-Dimensional Hole Gas |
title_fullStr | Spin–Orbit Interaction and Induced Superconductivity
in a One-Dimensional Hole Gas |
title_full_unstemmed | Spin–Orbit Interaction and Induced Superconductivity
in a One-Dimensional Hole Gas |
title_short | Spin–Orbit Interaction and Induced Superconductivity
in a One-Dimensional Hole Gas |
title_sort | spin–orbit interaction and induced superconductivity
in a one-dimensional hole gas |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6187512/ https://www.ncbi.nlm.nih.gov/pubmed/30192147 http://dx.doi.org/10.1021/acs.nanolett.8b02981 |
work_keys_str_mv | AT devriesfolkertk spinorbitinteractionandinducedsuperconductivityinaonedimensionalholegas AT shenjie spinorbitinteractionandinducedsuperconductivityinaonedimensionalholegas AT skolasinskirafalj spinorbitinteractionandinducedsuperconductivityinaonedimensionalholegas AT nowakmichalp spinorbitinteractionandinducedsuperconductivityinaonedimensionalholegas AT varjasdaniel spinorbitinteractionandinducedsuperconductivityinaonedimensionalholegas AT wanglin spinorbitinteractionandinducedsuperconductivityinaonedimensionalholegas AT wimmermichael spinorbitinteractionandinducedsuperconductivityinaonedimensionalholegas AT ridderbosjoost spinorbitinteractionandinducedsuperconductivityinaonedimensionalholegas AT zwanenburgflorisa spinorbitinteractionandinducedsuperconductivityinaonedimensionalholegas AT liang spinorbitinteractionandinducedsuperconductivityinaonedimensionalholegas AT koellingsebastian spinorbitinteractionandinducedsuperconductivityinaonedimensionalholegas AT verheijenmarcela spinorbitinteractionandinducedsuperconductivityinaonedimensionalholegas AT bakkerserikpam spinorbitinteractionandinducedsuperconductivityinaonedimensionalholegas AT kouwenhovenleop spinorbitinteractionandinducedsuperconductivityinaonedimensionalholegas |