Cargando…
Mixing Performance of a 3D Micro T-Mixer with Swirl-Inducing Inlets and Rectangular Constriction
In this paper, three novel 3D micro T-mixers, namely, a micro T-mixer with swirl-inducing inlets (TMSI), a micro T-mixer with a rectangular constriction (TMRC), and a micro T-mixer with swirl-inducing inlets and a rectangular constriction (TMSC), were proposed on the basis of the original 3D micro T...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6187579/ https://www.ncbi.nlm.nih.gov/pubmed/30424132 http://dx.doi.org/10.3390/mi9050199 |
Sumario: | In this paper, three novel 3D micro T-mixers, namely, a micro T-mixer with swirl-inducing inlets (TMSI), a micro T-mixer with a rectangular constriction (TMRC), and a micro T-mixer with swirl-inducing inlets and a rectangular constriction (TMSC), were proposed on the basis of the original 3D micro T-mixer (OTM). The flow and mixing performance of these micromixers was numerically analyzed using COMSOL Multiphysics package at a range of Reynolds numbers from 10 to 70. Results show that the three proposed 3D micro T-mixers have achieved better mixing performance than OTM. Due to the coupling effect of two swirl-inducing inlets and a rectangular constriction, the maximum mixing index and pressure drop appeared in TMSC among the four micromixers especially; the mixing index of TMSC reaches 91.8% at Re = 70, indicating that TMSC can achieve effective mixing in a short channel length, but has a slightly higher pressure drop than TMSI and TMRC. |
---|