Cargando…

Effects of Microchannel Shape and Ultrasonic Mixing on Microfluidic Padlock Probe Rolling Circle Amplification (RCA) Reactions

The fluorescence in situ hybridization (FISH)-based padlock probe and rolling circle amplification (RCA) method allows for the detection of point mutations. However, it requires multiple reaction steps and solution exchanges, making it costly, labor-intensive, and time-consuming. In this study, we a...

Descripción completa

Detalles Bibliográficos
Autores principales: Ishigaki, Yuri, Sato, Kae
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6187661/
https://www.ncbi.nlm.nih.gov/pubmed/30424205
http://dx.doi.org/10.3390/mi9060272
Descripción
Sumario:The fluorescence in situ hybridization (FISH)-based padlock probe and rolling circle amplification (RCA) method allows for the detection of point mutations. However, it requires multiple reaction steps and solution exchanges, making it costly, labor-intensive, and time-consuming. In this study, we aimed to improve the efficiency of padlock/RCA by determining the effects of microchannel shape and ultrasonic solution mixing. Using a circular-shaped microchamber and ultrasonic mixing, the efficiency of microfluidic padlock/RCA was improved, and the consumption of the expensive probe solution was reduced from 10 µL to approximately 3.5 µL. Moreover, the fluorescent probe hybridization time was reduced to 5 min, which is four times faster than that of the standard protocol. We used this method to successfully detect mitochondrial DNA and transcripts of β-actin and K-ras proto-oncogene codon 12 in cells. Our method offers improvements over current padlock/RCA methods and will be helpful in optimizing other microfluidics-based FISH-related analyses.