Cargando…

Noise Source Visualization for Small DC Motors Using Current Reference without a Reference Microphone

Noise and vibration sources from small direct current (DC) motors should be clearly visualized for optimal design of low noise motors. For accurate visualization, relatively good reference measurements at optimal locations are required. For some very small motors, the optimal position for a stationa...

Descripción completa

Detalles Bibliográficos
Autor principal: Cho, Yong Thung
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6187674/
https://www.ncbi.nlm.nih.gov/pubmed/30424223
http://dx.doi.org/10.3390/mi9060290
Descripción
Sumario:Noise and vibration sources from small direct current (DC) motors should be clearly visualized for optimal design of low noise motors. For accurate visualization, relatively good reference measurements at optimal locations are required. For some very small motors, the optimal position for a stationary reference microphone may not be accessible during measurement. However, strategies for small motor noise visualization without using a reference microphone have been developed in this study. Only scanning microphones and current measurements of a small motor were used to visualize sound sources. Scanning microphone signals combined with current measurements were used as moving reference signals. Motor noise visualization results based on different moving reference locations have been estimated and reported. Consistent motor noise visualization results from motor current and different, moving reference locations for the major electro-magnetic force excitation frequencies have been shown. Furthermore, for frequencies with relatively low current amplitude, clear motor noise visualization results have been produced for a moving reference located at the center of the motor. Also, the relationship between motor noise and current has been shown, and motor noise has been reduced by connecting an optimal capacitor to the motor power input.