Cargando…

Fabrication of Random Microwell Arrays as Pseudo-Thermal Speckle Light Source

Quantum correlated imaging using the intensity fluctuations of thermal light possesses advantages of high resolution and strong anti-interference ability. The common method to produce pseudo-thermal light source is using a rotary ground glass and transmission of laser beam. In the present work, we p...

Descripción completa

Detalles Bibliográficos
Autores principales: Cao, Axiu, Pang, Hui, Wang, Jiazhou, Shi, Lifang, Deng, Qiling, Hu, Song
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6187683/
https://www.ncbi.nlm.nih.gov/pubmed/30424189
http://dx.doi.org/10.3390/mi9060256
Descripción
Sumario:Quantum correlated imaging using the intensity fluctuations of thermal light possesses advantages of high resolution and strong anti-interference ability. The common method to produce pseudo-thermal light source is using a rotary ground glass and transmission of laser beam. In the present work, we propose a method for the fabrication of microwell arrays with randomly varied diameters, which could be used as a new structural element for pseudo-thermal speckle light source. If these are etched with random sizes then they may also have random and complex varying curvatures (diffusion limited etching) leading to random destructive interference of the coherent beam which could be a good thing. The microwell arrays, with diameters randomly varying from 5 μm to 40 μm, height varying from 200 nm to 20 μm, were fabricated by photolithography combined with acid etching. The experimental conditions are simple and can be scaled up to for large structures. The produced microwell arrays can transform the laser beam to a pseudo-thermal light source with a certain divergent angle by rational designing of mask and adjustable process parameters.